HYDROGELS BASED ON NATURAL POLYMERS STRUCTURED WITH PROPYLENE GLYCOL DIEPOXIDE FOR DRUG DELIVERY

2024;
: 176-183
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

The article presents the conditions of synthesis and the results of characterization of the obtained gelatin and gelatin-alginate hydrogels structured with polypropylene glycol diepoxide. The swelling in water, saline, and model exudate was studied, and the gel fraction and tensile strength of the synthesized samples were determined. The regularities of saturation with drugs and their release into model environments were obtained. The potential use of these materials for transdermal drug delivery is considered.

  1. Bruck, S. D. (1998). Book review: Electrically assisted transdermal and topical drug delivery, by ajay k. Banga. Critical Reviews in Therapeutic Drug Carrier Systems, 15(6), 2. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i6.40
  2. Vasylev A.E., Krasniuk Y.Y., Ravykumar S. (2001). Transdermalnye terapevtycheskye systemy dostavky lekarstvennykh veshchestv. Khymyko-farmatsevtycheskyi zhurnal, 11(35), 29-42
  3. Samchenko, Yu. M., Pasmurtseva, N. A., & Ulberh, Z. R. (2007). Dyffuzyia lekarstvennykh preparatov yz hydrohelevykh nanoreaktorov. Dopovidi Natsionalnoi akademii nauk Ukrainy, 6, 143.
  4. Kiyozumi, T., Kanatani, Y., Ishihara, M., Saitoh, D., Shimizu, J., Yura, H., Suzuki, S., Okada, Y., & Kikuchi, M. (2006). Medium (Dmem/f12)‐containing chitosan hydrogel as adhesive and dressing in autologous skin grafts and accelerator in the healing process. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 79B(1), 129–136. https://doi.org/10.1002/jbm.b.30522
  5. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
  6. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20(11), 20397–20408. https://doi.org/10.3390/molecules201119705
  7. Gu, D., O’Connor, A. J., G.H. Qiao, G., & Ladewig, K. (2017). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290
  8. Yang, Z., Nie, S., Hsiao, W. W., & Pam, W. (2011). Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. International Journal of Nanomedicine, 151. https://doi.org/10.2147/IJN.S15057
  9. Donnelly, R. F. (2012). Microneedle-mediated transdermal and intradermal drug delivery. Wiley-Blackwell.
  10. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079
  11. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611–7623. https://doi.org/10.1007/s13204-023-02956-6
  12. Pertsev I.M., Piminov O.F., Slobodianiuk M.M. ta in (2007). Farmatsevtychni ta medyko-biolohichni aspekty likiv, Nova Knyha.
  13. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P. (2022). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 62(14), 3817–3832. https://doi.org/10.1080/10408398.2020.1870034
  14. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186. https://doi.org/10.2174/1381612825666190425190754
  15. Smistad, G., Bøyum, S., Alund, S. J., Samuelsen, A. B. C., & Hiorth, M. (2012). The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydrate Polymers, 90(3), 1337–1344. https://doi.org/10.1016/j.carbpol.2012.07.002
  16. Benson, H. A. E., Grice, J. E., Mohammed, Y., Namjoshi, S., & Roberts, M. S. (2019). Topical and transdermal drug delivery: From simple potions to smart technologies. Current Drug Delivery, 16(5), 444–460. https://doi.org/10.2174/1567201816666190201143457
  17. Ruela, A. L. M., Perissinato, A. G., Lino, M. E. D. S., Mudrik, P. S., & Pereira, G. R. (2016). Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian Journal of Pharmaceutical Sciences, 52(3), 527–544. https://doi.org/10.1590/s1984-82502016000300018
  18. Ahsan, A., Tian, W.-X., Farooq, M. A., & Khan, D. H. (2021). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(8), 574–584. https://doi.org/10.1080/00914037.2020.1740989
  19. Vigata, M., Meinert, C., Hutmacher, D. W., & Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12(12), 1188. https://doi.org/10.3390/pharmaceutics12121188
  20. Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
  21. Samchenko, Y., Ulberg, Z., & Korotych, O. (2011). Multipurpose smart hydrogel systems. Advances in Colloid and Interface Science, 168(1–2), 247–262. https://doi.org/10.1016/j.cis.2011.06.005
  22. Seong, D.-Y., & Kim, Y.-J. (2015). Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 146, 34–43. https://doi.org/10.1016/j.jphotobiol.2015.02.022
  23. Li, S., Dong, S., Xu, W., Tu, S., Yan, L., Zhao, C., Ding, J., & Chen, X. (2018). Antibacterial hydrogels. Advanced Science, 5(5), 1700527. https://doi.org/10.1002/advs.201700527
  24. Dolynskyi, H. A., Samchenko, Yu. M., Pasmurtseva, N. A., Poltoratskaia, T. P., Ulberh, Z. R., Kyslukhyna, M. A., & Hamaleia, N. F. (2015). Fotobakterytsydni vlastyvosti termochutlyvoho hidrohelevoho nanokompozytu z metylenovym synim. Fotobiolohiia ta fotomedytsyna, 12(3, 4), 86-91. vylucheno iz https://periodicals.karazin.ua/photomedicine/article/view/4618
  25. Arif, T. (2015). Salicylic acid as a peeling agent: A comprehensive review. Clinical, Cosmetic and Investigational Dermatology, 455. https://doi.org/10.2147/CCID.S84765
  26. Rhein, L., Chaudhuri, B., Jivani, N., Fares, H., & Davis, A. (2004). Targeted delivery of salicylic acid from acne treatment products into and through skin: Role of solution and ingredient properties and relationships to irritation. Journal of Cosmetic Science, 55(1), 65–80