Formation of macroporous hydrogel foam based on sodium alginate

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The features of forming macroporous hydrogel foam during the foaming of aqueous sodium alginate solutions with simultaneous cross-linking of sodium alginate macromolecules by calcium ions are considered. Foaming is achieved through the release of carbon dioxide from the hydrogel composition due to the interaction of carbonates with carboxyl groups. The study outlines the most significant factors influencing the formation process of macroporous hydrogel foam.

  1. Ben Djemaa, S., Auguste, S., Drenckhan-Andreatta, W., & Andrieux, S. (2021). Hydrogel foams from liquid foam templates: Properties and optimisation. Advances in Colloid and Interface Science, 294, 102478. https://doi.org/10.1016/j.cis.2021.102478
  2. Aminabhavi, T. M., & Deshmukh, A. S. (2016). Polymeric hydrogels as smart biomaterials. In Polymeric hydrogels (pp. 1-20). Springer. https://doi.org/10.1007/978-3-319-25322-0
  3. Dubey, S., Sharma, R., Mody, N., & Vyas, S. P. (2018). Polymeric hydrogel: A flexible carrier system for drug delivery. In Functional biopolymers (pp. 141–184). Springer. https://doi.org/10.1007/978-981-10-6083-0
  4. Hu, X., & Meng, Z. (2024). An overview of edible foams in food and modern cuisine: Destabilization and stabilization mechanisms and applications. Comprehensive Reviews in Food Science and Food Safety, 23, e13284. https://doi.org/10.1111/1541-4337.13284
  5. Liu, S., Rao, Z., Wu, R., Sun, Z., Yuan, Z., Bai, L., Wang, W., Yang, H., & Chen, H. (2019). Fabrication of microcapsules by the combination of biomass porous carbon and polydopamine for dual self-healing hydrogels. Journal of Agricultural and Food Chemistry, 67(4), 1061–1071. https://doi.org/10.1021/acs.jafc.8b06241
  6. De France, K. J., Xu, F., & Hoare, T. (2018). Structured macroporous hydrogels: Progress, challenges, and opportunities. Advanced Healthcare Materials, 7(1), 1700927. https://doi.org/10.1002/adhm.201700927
  7. Ben Djemaa, I., Andrieux, S., Auguste, S., Jacomine, L., Tarnowska, M., & Drenckhan-Andreatta, W. (2022). One-step generation of alginate-based hydrogel foams using CO2 for simultaneous foaming and gelation. Gels, 8(7), 444. https://doi.org/10.3390/gels8070444
  8. Solano, A. G., Dupuy, J., Therriault, H., Liberelle, B., Faucheux, N., Lauzon, M.-A., Virgilio, N., & Paquette, B. (2021). An alginate-based macroporous hydrogel matrix to trap cancer cells. Carbohydrate Polymers, 266, 118115. https://doi.org/10.1016/j.carbpol.2021.118115
  9. Chen, Y., Song, H., Wang, X., Huang, R., Li, S., & Guan, X. (2025). Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin. International Journal of Biological Macromolecules, 291, 139159. https://doi.org/10.1016/j.ijbiomac.2024.139159
  10. Gorczyca, G., Tylingo, R., Szweda, P., Augustin, E., Sadowska, M., & Milewski, S. (2014). Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Carbohydrate Polymers, 102, 901–911. https://doi.org/10.1016/j.carbpol.2013.10.060
  11. Lundin, J. G., Daniels, G. C., McGann, C. L., Stanbro, J., Watters, C., Stockelman, M., et al. (2017). Multi-functional polyurethane hydrogel foams with tunable mechanical properties for wound dressing applications. Macromolecular Materials and Engineering, 302(1).
  12. Raya, B., Caroline, C., Christophe, T., Benjamin, D., Philippe, B., Daniel, C., et al. (2016). Design of biopolymer-based 3D scaffolds for cardiac mesenchymal stem cell therapy. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/conf.fbioe.2016.01.00734
  13. Wake, M. C., Mikos, A. G., Sarakinos, G., Vacanti, J. P., & Langer, R. (1995). Dynamics of fibrovascular tissue ingrowth in hydrogel foams. Cell Transplantation, 4(3), 275–279. https://doi.org/10.1016/0963-6897(95)00003-G
  14. Andersen, T., Markussen, C., Dornish, M., Heier-Baardson, H., Melvik, J. E., Alsberg, E., et al. (2014). In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Engineering Part A, 20(5-6), 874–884. https://doi.org/10.1089/ten.tea.2013.0223
  15. Deotale, S. M., Dutta, S., Moses, J. A., et al. (2023). Foaming and defoaming—Concepts and their significance in food and related industries: A review. Discover Chemical Engineering, 3(1), 9. https://doi.org/10.1007/s43938-023-00025-6
  16. Amankeldi, F., Ospanova, Z., & Musabekov, K. (2018). Composite foaming agents on the basis of high-molecular natural surfactants. Colloids and Interfaces, 2(1), 2. https://doi.org/10.3390/colloids2010002
  17. Chou, H.-Y., Weng, C.-C., Lai, J.-Y., Lin, S.-Y., & Tsai, H.-C. (2020). Design of an interpenetrating polymeric network hydrogel made of calcium-alginate from a thermos-sensitive pluronic template as a thermal-ionic reversible wound dressing. Polymers, 12(9), 2138. https://doi.org/10.3390/polym12092138
  18. Xu, M., Luo, H., Rong, H., Wu, S., Zheng, Z., & Chen, B. (2023). Calcium alginate gels-functionalized polyurethane foam decorated with silver nanoparticles as an antibacterial agent for point-of-use water disinfection. International Journal of Biological Macromolecules, 231, 123289. https://doi.org/10.1016/j.ijbiomac.2023.123289
  19. Ghiurea, M., Tritean, N., Dima, Ş.-O., Trică, B., Hosu, I., & Oancea, F. (2023). The influence of calcium–sodium ion exchange in the rheometry of sodium alginate-based hydrogel. Chemical Proceedings, 13(1), 13. https://doi.org/10.3390/chemproc2023013013
  20. Bukartyk, M. M., Nosova, N. G., Maikovych, O. V., Bukartyk, N. M., Stasiuk, A. V., Dron, I. A., Fihurka, N. V., Khomyak, S. V., Ostapiv, D. D., Vlizlo, V. V., Samaryk, V. Y., & Varvarenko, S. M. (2022). Preparation and research of properties of combined alginate/gelatin hydrogels. Journal of Chemistry and Technologies, 30(1), 11–20. https://doi.org/10.15421/jchemtech.v30i1.242230