Decomposition of the gravitational field of the triaxial ellipsoidal planet using a class of nonorthogonal harmonic functions

2011;
: pp. 34-37
Authors:
1
Department of Cartography and Geospatial Modeling, Institute of Geodesy, Lviv Polytechnic National University

In this work is presented a potential of triaxial ellipsoid this help of converging rows. The koeficients which are determined integral descriptions of distributing function density of planet. This approach gives a possibility in a complex to study distributing of the masses of planet, its figure and its external gravity field.

 

  1. Bursha M. Trexosnost' Zemli, Luny i Marsa [Triaxial Earth, the Moon and Mars]. Izuchenie Zemli kak planety metodami geodezii i geofiziki : Tr. I Orlovskoj konferencii. [The study of the Earth as a planet by methods of Geodesy and Geophysics: Tr. I Orel conference]. Kyiv: Nauk. Dumka, 1983, pp. 17–19.
  2. Wentzel G. Ultra high degree geopotential models GPM 98A, GPM 98B and GPM 98C to degree 1800. Report 98:4, Finnish Geodetic Institute, Masala, 1998, pp.71–80.
  3. Fys M. M Pro odyn klas ne ortohonalnykh dlia elipsoida harmoniinykh funktsii[About one class is not orthogonal to elіpsoїda garmonіynih funktsіy]. Zbirnyk naukovykh prats Zakhidnoho heodezychnoho tovarystva UTKhK, vyp.1(11), „Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva. [Collected Works of the Western Society of geodetic, issue.1 (11), "Suchasnі dosyagnennya geodezichnoї science that virobnitstva."]. Lviv: National University "Lviv Polytechnic]. p. 55–63.
  4. Muratov R.Z. Potencialy e'llipsoida [The potentials of the ellipsoid]. Moscow: Atomizdat, 1976, 143 p.
  5. Gobson E.V. Teoriya sfericheskix i e'llipsoidal'nyx funkcij [The theory of spherical and ellipsoidal functions]. Moscow: IL 1953, 476 p.
  6. Meshheryakov G.A. Zadachi teorii potenciala i obobshhennaya Zemlya[Problems of potential theory and the generalized Earth]. Moscow: Nauka, 1991, 216 p.
  7. Antonov V. A., Timoshkova E.I., Xolshevnikov K.V. Vvedenie v teoriyu n'yutonovskogo potenciala[Introduction to the theory of the Newtonian potential]. Moscow: Nauka, Main Editorial F.-M. Literature], 1988, 27 p.
  8. Xolshevnikov K. V. O predstavlenii gravitacionnogo polya Fobosa. Izuchenie Zemli kak planety metodami geofiziki i geodezii[On the representation of the gravitational field of Phobos.]: Tr. IIII Orlovskoj konferencii. [The study of the Earth as a planet by methods of geophysics and geodesy. Proc. IIII Orel conference]. Kyiv: Nauk. Dumka, 1982, pp. 94–95.
  9. Meshheryakov G.A., Fys M.M. Opredelenie plotnosti zemnyx nedr ryadami po biortogonal'nym sistemam mnogochlenov[Density determination of the Earth's interior rows of biorthogonal systems of polynomials]. Teoriya i metody interpretacii gravitacionnyx i magnitnyx anomalij[Theory and methods of interpretation of gravity and magnetic anomalies]. 1981, pp.329–334.
  10. Fys M.M O sxodimosti v srednem biortogonal'nyx vnutri e'llipsoida[On the mean convergence of biorthogonal inside the ellipsoid]. Differencial'nye uravneniya i ix prilozheniya [Differential equations and their applications]. Lvov: 1983, issue 172, pp.132–132.
  11. Fys M.M., Zazulyak P.M., Zayac' O. S. Do pitannya viznachennya kul'ovix funkcіj v zagal'no planetarnіj sistemі koordinat[To-rail viznachennya kulovih funktsіy in zagalno planetarnіy sistemі coordinates]. Zb. nauk. pr. Zaxіdnogo geodezichnogo tovaristva“Suchasnі dosyagnennya geo-dezichnoї nauki ta virobnictva ”[ ST. Sciences. pr. Zahіdnogo geodesic tovaristva "Suchasnі dosyagnennya geo-science that dezichnoї virobnitstva."]. 2004, pp. 41–42.
  12. Fis M., Zayac' O., Foca R., Volos V. Pro odin metod viznachennya potencіalu neodnorіdnoї elіpsoїdal'noї planeti[About one method viznachennya potentsіalu neodnorіdnoї elіpsoїdalnoї planet]. Zb. nauk. pr. Zaxіdnogo geodezichnogo tovaristva“Suchasnі dosyagnennya geodezichnoї nauki ta virobnictva ”[ ST. Sciences. pr. Zahіdnogo geodesic tovaristva "Suchasnі dosyagnennya geodezichnoї science that virobnitstva"], 2005, pp. 41–42.
  13. Chanrasekaxar S. Ellipsoidal figures of equilibrium. Moscow: Mir, 1973, 288 p.