Treatment of high-strength wastewater from ammonium and phosphate ions with the obtaining of struvite

2017;
: pp. 463–468
Received: July 01, 2016
Revised: July 29, 2016
Accepted: December 22, 2016
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

This work reviews the main methods of nitrogen and phosphorus removal from wastewater. The method of simultaneous removal of highly concentrated nitrogen and phosphorus was analyzed by physical and chemical precipitation, forming struvite, a by-product of magnesium ammonium orthophosphate hexahydrate. Laboratory investigations were conducted on the test solutions with the concentrations of ammonium nitrogen, phosphates, ions of magnesium and calcium corresponding to the ones of relevant elements in wastewater of swine complexes located in Lviv region, Ukraine. The analyses were done at various molar ratios of magnesium and phosphate ions and at various pH values. The comparative thermal analysis of chemical precipitation products and pure struvite was performed. The optimal conditions were identified to experience the maximum efficiency of simultaneous removal of ammonium nitrogen and phosphate ions from wastewater, forming MgNH4PO4·6H2O. Recommendations on the use of the obtained product as a fertilizer were elaborated.

[1] Chislock M., Doster E., Zitomer R. et al.: Nat. Educ. Knowl., 2013, 4, 10. 

[2] Kresyn V., Yeremenko Ye., Zakharchenko M. et al.: Ekolohiia Dovkillia ta Bezpeka Zhyttiediialnosti, 2008, 5, 28. https://doi.org/10.1016/j.jenvp.2008.02.004

[3] Hentse M. et al.: Ochistka Stochnykh Vod. Mir, Moskva 2008.

[4] Guadie A., Xia S., Jiang W. et al.: J. Environ. Sci., 2014, 26, 765. https://doi.org/10.1016/S1001-0742(13)60469-6

[5] Uludag D., Demirer G., Chen S.: Process Biochem., 2005, 40, 3667. https://doi.org/10.1016/j.procbio.2005.02.028

[6] Negrea A., Lupa L., Negrea P. et al.: Chem. Bull. "POLITEHNICA" Univ. (Timisoara), 2010, 55, 136.

[7] Nelson N., Mikkelsen R., Hesterberg D.: Bioresourse Technol., 2003, 89, 229. https://doi.org/10.1016/S0960-8524(03)00076-2

[8] Shin H., Lee S.: Environ. Technol., 1997, 19, 283. https://doi.org/10.1080/09593331908616682

[9] Schuiling R., Andrade A.: Environ. Technol., 1999, 20, 765. https://doi.org/10.1080/09593332008616872

[10] Yong-Hui S.,  Guang-Lei Q., Peng Y. et al.: J. Hazard. Mater., 2011, 190, 140. https://doi.org/10.1016/j.jhazmat.2011.03.015

[11] Liu Y., Kwag J.-H., Kim J.-H. et al.: Desalination, 2011, 277, 364. https://doi.org/10.1016/j.desal.2011.04.056

[12] Ichihashi O., Hirooka K.: Bioresource Technol., 2012, 114, 303.

[13] Technical Bulletin: Wastewater “Struvite Formation and Control”, Cranfield University, United Kingdom 2003.

[14] Buchanan J., Mote C., Robinson R.: Trans. ASAE, 1994, 37, 617.

[15] Handbook of Mineralogy 2001-2005. Mineral Data Publishing, version 1.

[16] Lurye Yu.: Unifitsirovannye Metody Analiza Vod. Khimiia, Moskva 1973.

[17] Lurye Yu.: Analiticheskaia Khimiia Promyshlennykh Stochnykh Vod. Khimiia, Moskva 1984.

[18] Lyalikov Yu.: Analiticheskaia Khimiia Phosphora. Nauka, Moskva 1974.

[19] Ronteltap M., Maurer M., Hausherr R. et al.: Int. Assoc. Water Pollut. Res., 2010, 44, 2038. https://doi.org/10.1021/es9032524

[20] Kovalchuk A.: Visnyk Nats. Univ. Vodnogo Hospodarstva ta Pryrodokorystuvannya, 2011, 4, 56.

[21] Salimi M., Heughebaert C., Nancollas, G.: Langmuir, 1985, 1, 119. https://doi.org/10.1016/0963-9969(94)00053-B

[22] Capdevielle A., Sykorova E., Biscans B. et al.: J. Hazard. Mater., 2013, 244-245, 357. DOI: 10.1029/WR023i002p00368