Role of Supramolecular Strucutres in Mechanisms of Catalytic Oxidation and Action of Ni(Fe)ARD Dioxygenases on Model Systems

2020;
: pp. 304 - 311
1
The Federal State Budget Institution of Science, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russian Federation
2
The Federal State Budget Institution of Science, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russian Federation
3
The Federal State Budget Institution of Science, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russian Federation
4
The Federal State Budget Institution of Science, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russian Federation

The AFM technique was used to research the possibility of the supramolecular structures formation due to H-bonds based on Ni(Fe)(acac)n-systems, that are catalysts of alkylarens oxidations and also models Ni(Fe)ARD dioxygenases: {M(acac)n+L2+L3} triple systems (M=NiII, FeIII , L2 = NMP (NMP = N-methyl-2-pirrolidone), L-histidine, L3 = PhOH, L-tyrosine), n = 2, 3). Role of H-bonding and supramolecular structures in alkylarens oxidations, catalyzed with Ni(or Fe) complexes catalysts, and also role of supramolecular structures and Tyr-fragment in mechanisms of Ni(Fe)ARD-actions is discussed.

  1. Matienko L., Mosolova L., Zaikov G.: Russ. Chem. Rev., 2009, 78, 211. https://doi.org/10.1070/RC2009v078n03ABEH003919
  2. Matienko L., Mosolova L., Zaikov G.: Selective Catalytic Hydrocarbons Oxidation. New Perspectives. Nova Science Publ. Inc., New York 2010.
  3. Beletskaya I., Tyurin V., Tsivadze A. et al: Chem. Rev., 2009, 109, 1659. https://doi.org/10.1021/cr800247a
  4. Slater A., Perdigao L., Beton P., Champness N.: Acc. Chem. Res., 2014, 47, 3417. https://doi.org/10.1021/ar5001378
  5. Matienko L., Mosolova L.: Oxid. Commun., 2014, 37, 20.
  6. Matienko L., Mosolova L., Binyukov V. et al: Ch. 8 [in:] Pearce E., Howell B., Pethrick R., Zaikov G. (Eds.), Physical Chemistry Research for Engineering and Applied Sciences. V.3. High Performance Materials and Methods. Apple Academic Press Inc., Toronto, New Jersey 2015, 63.
  7. Matienko L., Mosolova L., Binyukov V. et al: J. Biol. Res., 2012, 1, 37.
  8. Matienko L., Binyukov V., Mosolova L. et al: Chem. Chem. Technol., 2014, 8, 339. https://doi.org/10.23939/chcht08.03.339
  9. Deshpande A., Wagenpfail K., Pochapsky Th. et al: Biochemistry, 2016, 55, 1398. https://doi.org/10.1021/acs.biochem.5b01319
  10. Straganz G., Nidetzky B.: J. Am. Chem. Soc., 2005, 127, 12306. https://doi.org/10.1021/ja042313q
  11. Deshpande A., Pochapsky Th., Ringe D.: Chem. Rev., 2017, 117, 10474. https://doi.org/10.1021/acs.chemrev.7b00117
  12. Mbughuni M., Meier K., Münck E.: Biochemistry, 2012, 51, 8743. https://doi.org/10.1021/bi301114x
  13. Zhang J., Klinman J.: J. Am. Chem. Soc., 2011, 133, 17134. https://doi.org/10.1021/ja207467d
  14. Matienko L., Mosolova L., Binyukov V. et al.: Oxid. Commun. 40, 569 (2017).
  15. Matienko L., Mosolova L., Binyukov V. et al: J. Pharm. Pharmacol., 2017, 5, 379. https://doi.org/10.17265/2328-2150/2017.06.010
  16. Zhang Y., Heinsen M., Kostic M. et al.: Bioorg. Med. Chem., 2004, 12, 3847. https://doi.org/10.1016/j.bmc.2004.05.002
  17. Allpress C., Grubel K., Szajna-Fuller E. et al.: J. Am. Chem. Soc., 2013, 135, 659. https://doi.org/10.1021/ja3038189
  18. Nekipelov V., Zamaraev K.: Coord. Chem. Rev., 1985, 61, 185. https://doi.org/10.1016/0010-8545(85)80005-9
  19. Belsky V., Bulychev V.: Russ. Chem. Rev., 1999, 68, 119. https://doi.org/10.1070/RC1999v068n02ABEH000459
  20. Patel N., Ramachandran S., Azimov R. et al.: Biochemistry, 2015, 54, 7320. https://doi.org/10.1021/acs.biochem.5b00988