Electrochemical Oxidation of VT6 Titanium Alloy in Oxalic Acid Solutions

2020;
: pp. 221 - 226
1
National Technical University “Kharkiv Polytechnic Institute”
2
National Technical University “Kharkiv Polytechnic Institute”
3
National Technical University “Kharkiv Polytechnic Institute”
4
National Technical University “Kharkiv Polytechnic Institute”

The influence of the electrolysis parameters on the process of VT6 titanium alloy oxidizing in oxalic acid solutions is presented. It is shown that the nature of cell voltage-time curves for the alloy samples depends on the current density used. The interference-colored oxide films are formed on the surface of the alloy at the anodic current density above 0.5 A∙dm-2. The maximal thickness and the oxide film color are determined by the cell voltage and do not depend on other electrolysis parameters. The results of oxidation in oxalic and sulfuric acids solutions made it possible to establish the similarity of cell voltage-time dependencies and the time of oxide film formation with maximal thickness for these electrolysis conditions.

  1. Ellerbrock D., Macdonald D.: J. Solid State Elecrtochem., 2014, 18, 1485. https://doi.org/10.1007/s10008-013-2334-6
  2. Popa M., Vasilescu E., Drob P. et al.: Mater. Corros., 2002, 53, 51. https://doi.org/10.1002/1521-4176(200201)53:1<51::AID-MACO51>3.0.CO;2-6
  3. Garg H., Bedi G., Garg A.: J. Clin. Diagn. Res., 2012, 6, 319.
  4. Liu X., Chu P., Ding C.: Mat. Sci. Eng. R, 2004, 47, 49. https://doi.org/10.1016/j.mser.2004.11.001
  5. Mandracci P., Mussano F., Rivolo P. et al.: Coatings, 2016, 6, 1. https://doi.org/10.3390/coatings6010007
  6. John A., Jaganathan S., Supriyanto E. et al.: Curr. Sci., 2016, 111, 1003. https://doi.org/10.18520/cs/v111/i6/1003-1015
  7. Diefenbeck M., Mückley T., Schrader C. et al.: Biomaterials, 2011, 32, 8041. https://doi.org/10.1016/j.biomaterials.2011.07.046
  8. Park E., Song Y., Hwang M. et al.: J. Nanosci. Nanotechnol., 2015, 15, 6133. https://doi.org/10.1166/jnn.2015.10469
  9. Lubas M., Sitarz M., Jasinski J. et al.: Spectrochim. Acta A, 2014, 133, 883. https://doi.org/10.1016/j.saa.2014.06.067
  10. Sul Y., Johansson C., Jeong Y. et al.: Med. Eng. Phys., 2001, 23, 329. https://doi.org/10.1016/S1350-4533(01)00050-9
  11. Sul Y., Byon E., Wennerberg A.: Int. J. Oral Maxillofac. Implants, 2008, 23, 631.
  12. Fojt J.: Appl. Surf. Sci., 2012, 262, 63. https://doi.org/10.1016/j.apsusc.2012.04.012
  13. Veiga C., Davim J., Loureiro A.: Rev. Adv. Mater. Sci., 2012, 32, 133.
  14. Pilipenko A., Pancheva H., Deineka V. et al.: EEJET, 2018, 3, 33. https://doi.org/10.15587/1729-4061.2018.132521
  15. Adya N., Alam M., Ravindranath T. et al.: J. Indian Prosthodont. Soc., 2005, 5, 126. https://doi.org/10.4103/0972-4052.17104
  16. Mohammed M., Khan Z., Siddiquee A.: Proc. Mat. Sci., 2014, 6, 1610.
  17. Diebold U.: Surf. Sci. Rep., 2003, 38, 53. https://doi.org/10.1016/S0167-5729(02)00100-0
  18. Blondeau G., Froelicher M., Froment M. et al.: J. Less-Common. Met., 1977, 56, 215. https://doi.org/10.1016/0022-5088(77)90043-1
  19. Aladjem A.: J. Mater. Sci., 1973, 8, 688. https://doi.org/10.1007/BF00561225
  20. Pancheva H., Reznichenko G., Miroshnichenko N. et al.: East.-Eur. J. Enterpr. Technol., 2017, 4, 59.
  21. Pilipenko, A., Pancheva, H., Reznichenko et al.: East.-Eur. J. Enterpr. Technol., 2017, 1, 21.