Alkali synthesis of fatty acid butyl and ethyl esters and comparative bench motor testing of blended fuels on their basis

2021;
: pp. 105 - 117
1
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
2
Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
4
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
5
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
6
A.M. Pydgorny Institute of Engineering Problems of National Academy of Science of Ukraine
7
A.M. Pydgorny Institute of Engineering Problems of National Academy of Science of Ukraine

Alkaline transesterification of sunflower oil by n-butanol and ethanol on alkoxide-containing dried solutions of potassium hydroxide has been carried out. Complex character of spontaneous dividing of butanolysis products, accompanying with formation of three different species of glycerol layers, was observed. One of the later was found to be high-alkaline pure glycerol. Bench motor testing of biodiesel/diesel blends demonstrated slightly better power performance of butyl esters comparing with ethyl esters and regular decrease of harmful emissions (CO2, CO, NOx, CH) while increasing biodiesel fraction in mixture.

  1. Knothe G., Krahl J., vanGerpen J. (Eds.): The Biodiesel Handbook, 2nd edn. Elsevier, Urbana, Illinois 2010.
  2. Luque R., Melero J. (Eds): Advances in Biodiesel Production. Woodhead Publishing, Cambridge 2012.
  3. Atabani A., Silitonga A., Badruddin I. et al.: Renew. Sust. Energ. Rev., 2012, 16, 2070. https://doi.org/10.1016/j.rser.2012.01.003
  4. Luque R., Ki Lin K., Wilson K. (Eds.): Handbook of Biofuels Production, Processes and Technologies, 2nd edn. Woodhead Publishing, Cambridge 2016.
  5. BP Statistical Review of World Energy, June 2018. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/stat...
  6. Sanli H., Canakci M.: Energy Fuels, 2008, 22, 2713. https://doi.org/ef700720w
  7. Hájek M., Skopal F., Vávra A. et al.: J. Clean. Prod., 2017, 155, 28. https://doi.org/10.1016/j.jclepro.2016.07.007
  8. Sharma Y., Singh B., Corstad J. et al.: Biofuels, Bioprod. Bioref., 2011, 5, 69. https://doi.org/10.1002/bbb.253
  9. Borges M., Diaz L.: Renew. Sust. Energ. Rev., 2012, 16, 2839. https://doi.org/10.1016/j.rser.2012.01.071
  10. Kuzminska M., Kovalchuk T., Backov R.: J. Catal., 2014, 320, 1. https://doi.org/10.1016/j.jcat.2014.09.016
  11. Sánchez M., Navas M., José Ruggera J. et al.: Energy, 2014, 73,661. https://doi.org/10.1016/j.energy.2014.06.067
  12. Jindapon W., Kuchonthara P., Ngamcharussrivichai C.: Fuel Process. Technol., 2016, 148, 67. https://doi.org/10.1016/j.fuproc.2016.02.031
  13. Wang Y., Chen B.: Catal. Today, 2016, 278, 335. https://doi.org/10.1016/j.fuproc.2016.02.031
  14. Srinivas D., Satyarthi J.: Indian. J. Chem. Sect. A., 2012, 51A, 174.
  15. Shahid E., Jamal Y.: Renew. Sust. Energ. Rev., 2011, 15, 4732. https://doi.org/10.1016/j.rser.2011.07.079
  16. Najafpour G. (Ed.): Biochemical Engineering and Biotechnology, 2nd edn. Elsevier, Amsterdam, 2015.
  17. Tigunova A., Shulga M., Blume Y.: Cytol. Genet, 2013, 47, 366. https://doi.org/10.3103/S0095452713060042
  18. StamenkovićO., Veličković A., Veljković V.:Fuel, 2011, 90, 3141. https://doi.org/10.1016/j.fuel.2011.06.049
  19. LiQ., XuJ., DuW. et al.: Renew. Sust. Energ. Rev., 2013, 25, 742. https://doi.org/10.1016/j.rser.2013.05.043
  20. Brunschwig C., Moussavou W., Blin J.: Progr. EnergyComb. Sci., 2012, 38, 283. https://doi.org/10.1016/j.pecs.2011.11.001
  21. Bodachivskyi Iu., Pop G., Zheleznyi L.: Chem. Chem. Tech., 2017, 11, 365. https://doi.org/10.23939/chcht11.03.365
  22. Nimcevic D., Puntigam R., Wörgetter M., Gapes J.: J. Am. Oil Chem. Soc., 2000, 77, 275. https://doi.org/10.1007/s11746-000-0045-1
  23. Freedman B., Butterfield R., Pryde E.: J. Am. Oil Chem. Soc., 1986, 63, 1375. https://doi.org/10.1007/bf02679606
  24. Bouaid A., El boulifi N., Hahati K. et al.: Chem. Eng. J., 2014, 238, 234. https://doi.org/10.1016/j.cej.2013.10.022
  25. Lang X., Dalai A., Bakhshi N. et al.: Bioresour. Technol., 2001, 80, 53. https://doi.org/10.1016/S0960-8524(01)00051-7
  26. Clark S., Wagner L., Schrock M. et al.: J. Am. Oil Chem. Soc, 1984, 61, 1632. https://doi.org/10.1007/BF02541648
  27. Canakci M., Erdil A., Arcaklioglu E.: Appl. Energ., 2006, 83, 594. https://doi.org/10.1016/j.apenergy.2005.05.003
  28. Sharon H., Karuppasamy K., Soban Kumar D.: Renew. Energ., 2012, 47, 160. https://doi.org/10.1016/j.renene.2012.04.032
  29. Patrylak L., Patrylak K., Okhrimenko M. et al.: Chem. Chem. Tech., 2015, 9, 363. https://doi.org/10.23939/chcht09.03.383
  30. Patrylak L., Patrylak K., Okhrimenko M. et al.: Fuel, 2013, 113, 650. https://doi.org/10.1016/j.fuel.2013.06.020
  31. Bozbas K.: Renew. Sust. Energ. Rew., 2008, 12, 542.
  32. Sze C., Whinihan J., Olson B. et al.: SAE Technical Paper 2007-01-4040, 2007. https://doi.org/10.4271/2007-01-4040.
  33. Makareviciene V., Janulis P.: Renew. Energ., 2003, 28, 2395. https://doi.org/10.1016/S0960-1481(03)00142-3
  34. Peterson C., Reece D.: SAE Technical Paper 961114, 1996. https://doi.org/10.4271/961114
  35. Zubenko S.,Konovalov S., Patrylak L.: Catalysis and Petrochemistry, 2017, 26, 36.
  36. Ramírez-Verduzco L., García-Flores B., Rodríguez-Rodríguez J. et al.: Fuel, 2011, 90, 1751. https://doi.org/10.1016/j.fuel.2010.12.032
  37. ASTM D 240:2017. American National Standard. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter.
  38. Patrylak L., Zubenko S., Konovalov S.: Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, 5, 125.
  39. Homana T., Shahbazb K., Farid M.: Sep. Puriph. Technol, 2017, 174, 570. https://doi.org/10.1016/j.seppur.2016.10.036
  40. Pradhan S., Shen J., Emami S. et al.: J. Ind. Eng. Chem., 2017, 46, 266. https://doi.org/10.1016/j.jiec.2016.10.038
  41. Ramírez-Verduzco L.F., Rodríguez-Rodríguez J., Jaramillo-Jacob A.: Fuel, 2012, 91, 102. https://doi.org/10.1016/j.fuel.2011.06.070
  42. Anastopoulos G., Zannikou Y., Stournas S. et al.: Energies, 2009, 2, 362. https://doi.org/10.3390/en20200362
  43. Najafi B., Abbasi Fakhr M., Jamali S.: Tarım MakinalarıBilimi Dergisi, 2011, 7, 361.
  44. Demirbas A.: Fuel, 2008, 87, 1743. https://doi.org/10.1016/j.fuel.2007.08.007
  45. EN 14214:2008. Europeanstandard. Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods.
  46. http://online.budstandart.com/ua/catalog/doc-page?id_doc=64384
  47. http://shop.uas.org.ua/ua/katalog-normativnih-dokumentiv/75-nafta-y-sumi...
  48. ASTMD6751:2018. American National Standard. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels
  49. Hamasaki K, Kinoshita E, Tajima S. et al.: The 5th Int. Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2001, 410.