Phase Equilibrium of Petroleum Dispersion Systems in Terms of Thermodynamics and Kinetics

2021;
: pp. 132 - 141
1
State Higher Educational Institution "Ukrainian State University of Chemical Technology"
2
State Higher Educational Institution "Ukrainian State University of Chemical Technology"
3
8, Gagarina Ave., 8, 49005, Dnipro, Ukraine
4
PJSC "Ukrtatnafta"
5
Lviv Polytechnic National University

The process of paraffin formation has been considered, including the peculiarities of the paraffin structure as a result of phase transitions with a decreasing temperature. Mathematical models for thermodynamic and kinetic calculations of the "solid-liquid" system phase equilibrium have been developed. To shift the "fuel oil-paraffin" balance towards the liquid, it is necessary to reduce the activity ratio of solid and liquid phases by introducing into the system a substance with a lower solubility parameter. To increase the stability, as well as structural and mechanical characteristics of fuel oil, the additive of plant origin was synthesized. The phase transitions in fuel oil depending on the temperature when adding different amounts of additives have been studied.

  1. Pylypiv L.: Naftohazova Enerhetyka, 2013, 1, 60.
  2. Rojenko K., Tertyshna O., Snizhko L. et al.: Naftohazova Haluzʹ Ukrainy, 2014, 2, 24.
  3. Ivanova L., Burov E., Koshelev V.: Neftegazovoe Delo, 2011, 1, 268.
  4. Reistle C.: Paraffin and Congealing-Oil Problems. G.P.O., Washington 1932.
  5. Musakaev N.: Proceedings of International Conference RDAMM-2001, Russia, Novosybirs’k 2001, 6-2, 318.
  6. Sharafutdinov R.: Prikladnaia Mechanika i Technicheskaia Fizika, 2001, 2, 111.
  7. Brusilovskyj A.: Fazovye Prevrashchenia pry Razrabotke Mestorozhdenyi Nefti i Gaza. Graal, Moskva 2002.
  8. Ortega-Rodriguez A., Cruz S., Gil-Villegas A. et al.: Energ. Fuel, 2003, 17, 1100. https://doi.org/10.1021/ef030005s
  9. Pedersen K., Skovborg P., Ronningsen H.: Energ. Fuel, 1991, 5, 924. https://doi.org/10.1021/ef00030a022
  10. Ghanaei E., Esmaeilzadeh F., Fathi Kaljahi F.: Int. J. Chem. Mol. Eng., 2007, 1, 48.
  11. Moiseev I.: Uspechi Khimii, 2013, 82, 616.
  12. Maksymuk Ju., Buhlak A., Kruk V. et al.: Khimia i Technologia Topliv i Masel, 2013, 3, 9.
  13. Maksymuk Ju., Buhlak A., Kruk V. et al.: Khimia i Technologia Topliv i Masel, 2013, 2, 12.
  14. Shabarov Ju.: Organicheskaia Khimia. Khimia, Мoskva 2010.
  15.  http://docs.cntd.ru/document/gost-30418-96
  16. https://www.astm.org/DATABASE.CART/HISTORICAL/D97-09.htm
  17. http://online.budstandart.com/ua/catalog/doc-page?id_doc=65853
  18. http://docs.cntd.ru/document/1200122881
  19. http://docs.cntd.ru/document/gost-4333-87
  20. Tertyshna O., Royenko K., Martynenko V. et al.: Chem. Chem. Technol., 2016, 10, 361. https://doi.org/10.23939/chcht10.03.361
  21. Zougari M., Sopkow T.: Ind. Eng. Chem. Res., 2007, 46, 1360. https://doi.org/10.1021/ie061002g
  22. Sivuchin D.: Obshchyi Kurs Fiziky. Tom II. Termodynamica i Molekuliarnaia Fizika. Nauka, Moskva 1990.
  23. Won K.: Fluid Phase Equilib., 1986, 30, 265. https://doi.org/10.1016/0378-3812(86)80061-9
  24. Won K.: Fluid Phase Equilib., 1989, 13, 377. https://doi.org/10.1016/0378-3812(89)80104-9
  25. Murgich J., Merino-Garcia D., Andersen S. et al.: Langmuir, 2002, 18, 9080. https://doi.org/10.1021/la025882p
  26. Chung T.-H.: SPE 67th Annual Technical Conference and Exhibition. USA, Washington 1992, 869. https://doi.org/10.2118/24851-MS
  27. Tertyshnaу E., Martynenko V., Gyrenko A. et al.: SOCAR Proceedings, 2018, 1, 52. https://doi.org/10.5510/OGP20180100340
  28. http://online.budstandart.com/ua/catalog/doc-page?id_doc=70773
  29. Markin A., Suchoverchov S.: Vestnik DVO Ros. Akad. Nauk, 2011, 5, 66.