ДФТ дослідження деяких мідних комплексів та їх межа виявлення

1
P.O. Box 165 RP, Tlemcen, 13000, Algeria; B.P. 119, Tlemcen, 13000, Algeria
2
Superior School of Applied Sciences; Laboratory ToxicoMed, University of Abou Bekr Belkaïd
3
Superior School of Applied Sciences

Проведено теоретичне дослідження кореляції між низькою межею виявлення (LOD) методу адсорбційної вольтамперометрії (AdSV ) та енергією стабільності комплексів металічних елементів. За допомогою DFT-розрахунків досліджено комплексоутворення мікроелементів міді з використанням як хелатоутворюючих речовин трьох органічних молекул: морин, червоний пірогалол та тимолфталексон. Проведено квантово-хімічні розрахунки на рівні B3LYP/6-31G(d), реалізовані в програмному пакеті Gaussian 09. Одержана величина індексу електрофільності ω вказує на те, що всі досліджувані молекули мають тенденцію до обміну електроном з міддю. Негативні значення вільної енергії G та ентальпії H показують, що реакції комплексоутворення мають спонтанний характер і є екзотермічними. Згідно з DFT розрахунками встановлено, що комплекс мідь-червоний пірогалол з більш ефективною межею виявлення (0,07 нг∙мл-1) має найменшу загальну енергію (-5100,213 a.u). Доведена залежність між загальною енергією трьох комплексів та межами їх виявлення за методом AdSV. Чим стабільніший комплекс, тим краще граничне значення виявлення.

[1] Ilyechova, E.Y.; Bonaldi, E.; Orlov, I.A.; Skomorokhova, E.A.; Puchkova, L.V.; Broggini, M. CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cell. 2019, 8, 322. https://doi.org/10.3390/cells8040322
[2] Pahonțu, E.; Ilieș, D.-C.; Shova, S.; Paraschivescu, C.; Badea, M.; Gulea, A.; Roșu, T. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper(II) Complexes with the Schiff Base Derived from 2-Hydroxy-4-Methoxybenzaldehyde. Molecules 2015, 20, 5771-5792. https://doi.org/10.3390/molecules20045771
[3] Attar, T., Medjati, N.D., Harek, Y., Larabi, L. Determination of Zinc levels in Healthy Adults from the West of Algeria by Differential Pulse Anodic Stripping Voltammetry. JAC 2013, 6, 855-860. https://doi.org/10.24297/jac.v6i1.964
[4] Abu-Shandi, K.H. Catalytic Oxidation of Cyclohex-2-enol at Porous Iron Zeolite-like Material: Investigations by GC/MS, Polarography and X-ray Powder Diffraction. Chem. Chem. Technol. 2018, 12, 147-153. https://doi.org/10.23939/chcht12.02.147
[5] Attar, T.; Dennouni-Medjati, N.; Harek, Y.; Larabi, L. The Application of Differential Pulse Cathodic Stripping Voltammetry in the Determination of Trace Copper in Whole Blood. J. Sens. Instrum. 2013, 1, 31-38. https://doi.org/10.7726/jsi.2013.1003
[6] Attar, T.; Harek, Y.; Larabi, L. Determination of Copper in Whole Blood by Differential Pulse Adsorptive Stripping Voltammetry. Mediterr. J. Chem. 2014, 2, 691-700. https://doi.org/10.13171/mjc.2.6.2014.22.02.30
[7] Al-Rashdi, A.A.; Gahlan, A.A.; Farghaly, O.A. Selective Preconcentration of Ultra Trace Copper (II) ion Using Square Wave Cathodic Adsorptive Stripping Voltammetry at Modified Carbon Past Electrode. Int. J. Electroche. Sci. 2020, 15, 977-989. https://doi.org/10.20964/2020.01.83
[8] Attar, T.; Harek, Y.; Larabi, L. Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry. J. Korean. Chem. Soc. 2013, 57, 568-573. https://doi.org/10.5012/jkcs.2013.57.5.568
[9] Sander, S. Simultaneous Adsorptive Stripping Voltammetric Determination of Molybdenum(VI), Uranium(VI), Vanadium(V), and Antimony(III). Anal. Chim. Acta 1999, 394, 81-89. https://doi.org/10.1016/S0003-2670(99)00218-4
[10] Bond, A.M.; Kratsis, S.K.; Newman, O.M.G. Combined Use of Differential Pulse Adsorptive and Anodic Stripping Techniques for the Determination of Antimony(III) and Antimony(V) in Zinc Electrolyte. Anal. Chim. Acta 1998, 372, 307-314. https://doi.org/10.1016/S0003-2670(98)00323-7
[11] Wagner, W.; Sander, S.; Henze, G. Trace Analysis of Antimony (III) and Antimony (V) by Adsorptive Stripping Voltammetry. Fresenius J. Anal. Chem. 1996, 354, 11-15. https://doi.org/10.1007/s002169600002
[12] Aguilar, J.C.; Rodríguez de San Miguel, E.; de Gyves, J. Adsorptive Stripping Voltammetry of In(III) in the Presence of Pyrogallol Red in Chloride-acetate Media. Rev. Soc. Quím. Mex. 2001, 45, 17-20.
[13] Grabarczyk, M.; Adamczyk, M. A Simple, Fast, and Inexpensive Simultaneous Determination of Trace Bismuth(III) and Lead(II) in Water Samples by Adsorptive Stripping Voltammetry. J. Anal. Method. Chem. 2017, 2017, 1. https://doi.org/10.1155/2017/1486497
[14] Deswati, D.; Suyani, H.; Safni, S.; Loekman, U.; Pardi, H. Simultaneous Determination of Cadmium, Copper and Lead in Sea Water by Adsorptive Stripping Voltammetry in the Presence of Calcon as a Complexing Agent. Indo. J. Chem., 2013, 13, 236. https://doi.org/10.22146/ijc.21282
[15] Oleneva, E.; Khaydukova, M.; Ashina, J.; Yaroshenko, I.; Jahatspanian, I.; Legin, A.; Kirsanov, D. A Simple Procedure to Assess Limit of Detection for Multisensor Systems. Sensors 2019, 19, 1359. https://doi.org/10.3390/s19061359
[16] Sanchez, J.M. Estimating Detection Limits in Chromatography from Calibration Data: Ordinary Least Squares Regression vs. Weighted Least Squares. Separations 2018, 5, 49. https://doi.org/10.3390/separations5040049
[17] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
[18] Benhadria, N.; Attar, T.; Messaoudi, B. Understanding the Link Between the Detection Limit and the Energy Stability of Two Quercetin-Antimony Complexes by Means of Conceptual DFT. S. Afr. J. Chem. 2020, 73, 120-124. https://doi.org/10.17159/0379-4350/2020/v73a17
[19] Safavi, A.; Shams, E. Determination of Trace Amounts of Copper(II) by Adsorptive Stripping Voltammetry of its Complex with Pyrogallol Red. Anal. Chim. Acta 1999, 385, 265-272. https://doi.org/10.1016/S0003-2670(98)00580-7
[20] Babaei, A.; Babazadeh, M.; Shams, E. Simultaneous Determination of Iron, Copper, and Cadmium by Adsorptive Stripping Voltammetry in the Presence of Thymolphthalexone. Electroanalysis 2007, 19, 978-985. https://doi.org/10.1002/elan.200603812
[21] Hajian, R.; Shams, E. Application of Adsorptive Stripping Voltammetry to the Determination of Bismuth and Copper in the Presence of Morin. Anal. Chim. Acta 2003, 491, 63-69. https://doi.org/10.1016/S0003-2670(03)00789-X
[22] Calais, J.-L. Int. J. Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00. Quantum Chem. 1993, 47, 101. https://doi.org/10.1002/qua.560470107
[23] Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
[24] Voorhis T., Scuseria G.: Mol. Phys., 1997, 92, 601. https://doi.org/10.1080/002689797170347
[25] Voorhis, T.V.; Scuseria, G.E. A Novel Form for the Exchange-correlation Energy Functional. J. Chem. Phys. 1998, 109, 400. https://doi.org/10.1063/1.476577
[26] Domingo, L.R.; Aurell, M.-J.; Perez, P.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Power of Common Diene/dienophile Pairs in Diels–Alder Reactions. Tetrahedron 2002, 58, 4417-4423. https://doi.org/10.1016/S0040-4020(02)00410-6
[27] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. et al. Gaussian 09, Revision A.02 ; Gaussian Inc.: Wallingford CT, 2009, 34. 
[28] Besler, B.H.; Merz Jr, K.M.; Kollman, P.A. Atomic Charges Derived from Semiempirical Methods. J. Comput. Chem. 1990, 11, 431-439. https://doi.org/10.1002/jcc.540110404
[29] Electronegativity, Structure and Bonding, Vol. 66; Sen, K.; Jorgenson, C., Eds.; Springer Verlag: Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
[30] Pal, S.; Roy, R.; Chandra, A.K. Change of Hardness and Chemical Potential in Chemical Binding: A Quantitative Model. J. Phys. Chem. 1994, 98, 2314-2317. https://doi.org/10.1021/j100060a018
[31] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[32] Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793-1874. https://doi.org/10.1021/cr990029p
[33] Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The Density Functional Viewpoint. J. Chem. Phys. 1978, 68, 3801. https://doi.org/10.1063/1.436185
[34] Kohn, W.; Sham, L.G. Self-Consistent Equations Including Exchange and Correlation Effects. J. Phys. Rev. 1965, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
[35] Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
[36] Pearson, R.G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorg. Chem. 1988, 27, 734-740. https://doi.org/10.1021/ic00277a030
[37] Attar, T.; Benchadli, A.; Messaoudi, B.; Benhadria, N.; Choukchou-Braham, E. Experimental and Theoretical Studies of Eosin Y Dye as Corrosion Inhibitors for Carbon Steel in Perchloric Acid Solution. Bull. Chem. React. Eng. Catal. 2020, 15, 454-464. https://doi.org/10.9767/bcrec.15.2.7753.454-464
[38] Chygyrynets, E.; Vorobyova, V. A Study of Rape-Cake Extract as Eco-Friendly Vapor Phase Corrosion Inhibitor. Chem. Chem. Technol. 2014, 8, 235-242. https://doi.org/10.23939/chcht08.02.235
[39] Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1933, 1, 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
[40] Samsonowicz, M.; Regulska, E.; Świsłocka, R.; Butarewicz, A. Molecular Structure and Microbiological Activity of Alkali Metal 3,4-Dihydroxyphenylacetates. J. Saudi Chem. Soc. 2018, 22, 896-907. https://doi.org/10.1016/j.jscs.2018.01.009
[41] Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez, P. A Further Exploration of a Nucleophilicity Index Based on the Gas-phase Ionization Potentials. J. Mol. Struct. Theochem 2008, 865, 68-72. https://doi.org/10.1016/j.theochem.2008.06.022
[42] Contreras, R.; Andres J.; Safont, V.S.; Campodonico, P.; Santos, J.G. A Theoretical Study on the Relationship between Nucleophilicity and Ionization Potentials in Solution Phase. J. Phys. Chem. A. 2003, 107, 5588-5593. https://doi.org/10.1021/jp0302865
[43] Zhang, K.; Zhou, X.; Du, P.; Zhang, T.; Cai, M.; Sun, P.; Huang, C.-H.Oxidation of β-Lactam Antibiotics by Peracetic Acid: Reaction Kinetics, Product and Pathway Evaluation. Water. Res. 2017, 123, 153-161. https://doi.org/10.1016/j.watres.2017.06.057
[44] Parr, R.G.; Yang, W. Density Functional Approach to the Frontier-electron Theory of Chemical Reactivity. J. Am. Chem. Soc. 1984, 106, 4049-4050. https://doi.org/10.1021/ja00326a036
[45] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
[46] De Proft, F.; Martin, J.M.L.; Geerlings, P. Calculation of Molecular Electrostatic Potentials and Fukui Functions Using Density Functional Methods. Chem. Phys. Lett. 1996, 256, 400-408. https://doi.org/10.1016/0009-2614(96)00469-1
[47] Nguyen, L.T.; Le, T.N.; De Proft, F.; Chandra, A.K.; Langenaeker, W.; Nguyen, M.T.; Geerlings, P.  Mechanism of [2 + 1] Cycloadditions of Hydrogen Isocyanide to Alkynes:  Molecular Orbital and Density Functional Theory Study. J. Am. Chem. Soc. 1999, 121, 5992-6001. https://doi.org/10.1021/ja983394r
[48] Alam, M.J.; Ahmad, S. Anharmonic Vibrational Studies of l-Aspartic Acid Using HF and DFT Calculations. Spectrochim. Acta A 2012, 96, 992-1004. https://doi.org/10.1016/j.saa.2012.07.135
[49] Demir, P.; Akman, F. Molecular Structure, Spectroscopic Characterization, HOMO and LUMO Analysis of PU and PCL Grafted onto PEMA-co-PHEMA with DFT Quantum Chemical Calculations. J. Mol. Struct. 2017, 1134, 404-415. https://doi.org/10.1016/j.molstruc.2016.12.101
[50] Kopacz, M. Quercetin- and Morinsulfonates as Analytical Reagents. J. Anal. Chem. 2003, 58, 225-229. https://doi.org/10.1023/A:1022630319311 
[51] Rakitskaya T., Truba A., Radchenko E.; Golub, A. et al.: Mono- and Bimetallic Complexes of Mn(II), Co(II), Cu(II), and Zn(II) with Schiff Bases Immobilized on Nanosilica as Catalysts in Ozone Decomposition Reaction. Chem. Chem. Technol. 2018, 12, 1-6. https://doi.org/10.23939/chcht12.01.001