Effect of Surface Modification on Structural and Thermal Properties of Nanocarbons of Different Dimensionalities

2022;
: pp. 573 - 580
1
Central Department of Chemistry, Tribhuvan University, Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Nepal Polymer Institute (NPI)
2
Polymer Service GmbH Merseburg
3
Polymer Service GmbH Merseburg
4
Polymer Service GmbH Merseburg
5
Leibniz Institute of Polymer Research Dresden
6
Central Department of Chemistry, Tribhuvan University, Research Centre for Applied Science and Technology (RECAST), Tribhuvan University
7
Department of Mathematics, School of Science, Kathmandu University

Multi-walled carbon nanotubes and graphite nanoplatelets were functionalized via acid treatment to overcome the problem of agglomeration. Fourier transform infrared spectroscopy showed the chemical modification of the nanocarbons while the general relationship between the chemical treatment and the defects population was analyzed by Raman spectroscopy. The information regarding the mass loss and impurities is obtained from the thermogravimetric analysis. X-ray diffraction showed the effect of acid treatment on the physical states of the nanocarbons including the crystalline texture. The comparative high interlayer distance in graphite suggested that graphite particles are exfoliated into sheets of graphene by this technique with smaller particle sizes. The thermogravimetric analysis confirmed the complete removal of impurities in the case of multi-walled carbon nanotubes (MWCNTs) and about 20 % of impurities as seen in oxidized graphite attributable to the presence of residual manganese that might have been introduced during the functionalization process. Moreover, the thermal stability was also observed well in the case of MWCNTs with lesser impurities left. Overall, two different nanocarbons with well-structured chemical modifications were obtained with a variation in the feasibility of functionalization.

[1] Rodríguez-Reinoso, F. The Role of Carbon Materials in Heterogeneous Catalysis. Carbon 1998, 36 (3), 159–175. https://doi.org/10.1016/S0008-6223(97)00173-5
[2] Barroso-Bujans, F.; Verdejo, R.; Pérez-Cabero, M.; Agouram, S.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; López-Manchado, M.A. Effects of Functionalized Carbon Nanotubes in Peroxide Crosslinking of Diene Elastomers. Eur. Polym. J. 2009, 45 (4), 1017–1023. https://doi.org/10.1016/j.eurpolymj.2008.12.029
[3] Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal Conductivity of Single-Walled Carbon Nanotubes. Phys. Rev. B 1999, 59 (4). https://doi.org/10.1103/PhysRevB.59.R2514
[4] Sun, X.; Zhao, W. Prediction of Stiffness and Strength of Single-Walled Carbon Nanotubes by Molecular-Mechanics-Based Finite Element Approach. Mater. Sci. Eng. A 2005, 390 (1–2), 366–371. https://doi.org/10.1016/j.msea.2004.08.020
[5] Unger, E.; Graham, A.; Kreupl, F.; Liebau, M.; Hoenlein, W. Electrochemical Functionalization of Multi-Walled Carbon Nanotubes for Solvation and Purification. Curr. Appl. Phys. 2002, 2 (2), 107–111. https://doi.org/10.1016/s1567-1739(01)00072-4
[6] Brosseau, C.; Quéffélec, P.; Talbot, P. Microwave Characterization of Filled Polymers. J. Appl. Phys. 2001, 89 (8), 4532–4540. https://doi.org/10.1063/1.1343521
[7] Brosseau, C. Generalized Effective Medium Theory and Dielectric Relaxation in Particle-Filled Polymeric Resins. J. Appl. Phys. 2002, 91 (5), 3197–3204. https://doi.org/10.1063/1.1447307
[8] Mdarhri, A.; Carmona, F.; Brosseau, C.; Delhaes, P. Direct Current Electrical and Microwave Properties of Polymer–Multiwalled Carbon Nanotubes Composites. J. Appl. Phys. 2008, 103 (5), 054303. https://doi.org/10.1063/1.2841461
[9] Mdarhri, A.; Brosseau, C.; Carmona, F. Microwave Dielectric Properties of Carbon Black Filled Polymers under Uniaxial Tension. J. Appl. Phys. 2007, 101 (8), 084111. https://doi.org/10.1063/1.2718867
[10] Brosseau, C.; Talbot, P. Instrumentation for Microwave Frequency–Domain Spectroscopy of Filled Polymers under Uniaxial Tension. Meas. Sci. Technol. 2005, 16 (9), 1823–1832. https://doi.org/10.1088/0957-0233/16/9/015
[11] Brosseau, C.; NDong, W.; Mdarhri, A. Influence of Uniaxial Tension on the Microwave Absorption Properties of Filled Polymers. J. Appl. Phys. 2008, 104 (7), 074907. https://doi.org/10.1063/1.2988900
[12] Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang, X.Z.; Vaia, R. A.; Park, C.; Adams, W.W.; Hauge, R.H. [et al.] Synthesis, Structure, and Properties of PBO/SWNT Composites. Macromolecules 2002, 35 (24), 9039–9043. https://doi.org/10.1021/ma0205055
[13] Sandler, J.K.W.; Pegel, S.; Cadek, M.; Gojny, F.; van Es, M.; Lohmar, J.; Blau, W. J.; Schulte, K.; Windle, A.H.; Shaffer, M.S.P. A Comparative Study of Melt-Spun Polyamide-12 Fibres Reinforced with Carbon Nanotubes and Nanofibres. Polymer 2004, 45 (6), 2001–2015. https://doi.org/10.1016/j.polymer.2004.01.023
[14] Swain, S. K.; Prusty, G.; Ray, A. S.; Behera, L. Dispersion of Nanoplatelets of Graphite on PMMA Matrix by in situ Polymerisation Technique. J. Exp. Nanosci. 2012, 9 (3), 240–248. https://doi.org/10.1080/17458080.2012.654475
[15] Le, H. H.; Hoang, X.T.; Das, A.; Gohs, U.; Stoeckelhuber, K.-W.; Boldt, R.; Heinrich, G.; Adhikari, R.; Radusch, H.-J. Kinetics of Filler Wetting and Dispersion in Carbon Nanotube/Rubber Composites. Carbon 2012, 50 (12), 4543–4556. http://doi.org/10.1016/j.carbon.2012.05.039
[16] Hirsch, A.; Vostrowsky, O. Functionalization of Carbon Nanotubes. Top. Curr. Chem. 2005, 245, 193–237. http://doi.org/10.1007/b98169
[17] Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 2006, 128 (24), 7720–7721. https://doi.org/10.1021/ja060680r
[18] Hou, P.-X.; Liu, C.; Cheng, H.-M. Purification of Carbon Nanotubes. Carbon 2008, 46 (15), 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009
[19] Broza, G. Synthesis, Properties, Functionalisation and Applications of Carbon Nanotube: A State of the Art Review. Chem. Chem. Technol. 2010, 4 (1), 35–45. https://doi.org/10.23939/chcht04.01.035
[20] Zeynalov, E.; Huseynov, A.; Huseynov, E.; Salmanova, N.; Nagiyev, Y.; Abdurakhmanova, N. Impact of As-Prepared and Purifıed Multi-Walled Carbon Nanotubes on the Liquid-Phase Aerobic Oxidatıon of Hydrocarbons. Chem. Chem. Technol. 2021, 15 (4), 479–485. https://doi.org/10.23939/chcht15.04.479
[21] Pittman, C.U.; He, G.-R.; Wu, B.; Gardner, S.D. Chemical Modification of Carbon Fiber Surfaces by Nitric Acid Oxidation Followed by Reaction with Tetraethylenepentamine. Carbon 1997, 35 (3), 317–331. https://doi.org/10.1016/s0008-6223(97)89608-x
[22] Pittman, C.U.; Wu, Z.; Jiang, W.; He, G.-R.; Wu, B.; Li, W.; Gardner, S.D. Reactivities of Amine Functions Grafted to Carbon Fiber Surfaces by Tetraethylenepentamine. Designing Interfacial Bonding. Carbon 1997, 35 (7), 929–943. https://doi.org/10.1016/s0008-6223(97)00047-x
[23] Djordjević, V.; Djustebek, J.; Cvetićanin, J.; Velićknović, S.; Veljković, M.; Borokov, M.; Babić Stojić, B.; Nešković, O. Methods of Purification and Characterization of Carbon Nanotubes. J. Optoelectron. Adv. Mater. 2006, 8 (4), 1631–1634. https://old.joam.inoe.ro/arhiva/pdf8_4/4Djordjevic.pdf (accessed April 10, 2022)
[24] Abuilaiwi, F.A.; Tahar, L.; Al-Harthi, M.; Atieh, M.A. Modification and Functionalization of Multiwalled Carbon Nanotube (MWCNT) via Fischer Esterification. Arab. J. Sci. Eng. 2010 35 (1C), 37–48. https://doi.org/10.13140/2.1.3447.3925
[25] Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods. J. Alloys Compd. 2010, 501 (1), 77–84. https://doi.org/10.1016/j.jallcom.2010.04.032
[26] Marshall, M.W.; Popa-Nita, S.; Shapter, J.G. Measurement of Functionalised Carbon Nanotube Carboxylic Acid Groups Using a Simple Chemical Process. Carbon 2006, 44 (7), 1137–1141. https://doi.org/10.1016/j.carbon.2005.11.010
[27] Ramin, C. Effect of Dry and Wet Oxidation of Multi-Walled Carbon Nanotubes on their Structures. Int. J. Acad. Res. 2011, 3 (2), 820–823.
[28] Chou, A.; Böcking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the Importance of Oxygenated Species at the Ends of Carbon Nanotubes for Their Favourable Electrochemical Properties. Chem. Comm. 2005, 7 (7), 842–844. https://doi.org/10.1039/b415051a
[29] Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon 2008, 46 (6), 833–840. https://doi.org/10.1016/j.carbon.2008.02.012
[30] Špitalský, Z.; Krontiras, C. A.; Georga, S. N.; Galiotis, C. Effect of Oxidation Treatment of Multiwalled Carbon Nanotubes on the Mechanical and Electrical Properties of Their Epoxy Composites. Compos. - A: Appl. Sci. Manuf. 2009, 40 (6–7), 778–783. https://doi.org/10.1016/j.compositesa.2009.03.008
[31] Ciszewski, M.; Mianowski, A. Survey of Graphite Oxidation Methods Using Oxidizing Mixtures in Inorganic Acids. Chemik 2013, 67 (4), 267–274.
[32] Yudianti, R.; Onggo, H.; Sudirman; Saito, Y.; Iwata, T.; Azuma, J.-I. Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface. Open Mater. Sci. J. 2011, 5 (1), 242–247. https://doi.org/10.2174/1874088X01105010242
[33] Yadav, K.S.; Mahapatra, S.S.; Yoo, J.H.; Cho, W.J. Synthesis of Multi-walled Carbon Nanotubes/Polyhedral Oligometric Silsesquioxane Nanohybrid by Utilizing Click Chemistry. Nanoscale Res. Lett. 2011, 6 (1), 122. https://doi.org/10.1186%2F1556-276X-6-122
[34] Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials 2018, 11 (12), 2442. https://doi.org/10.3390/ma11122442
[35] Chua, C.K.; Sofer, Z.; Pumera, M. Graphite Oxides: Effects of Permanganate and Chlorate Oxidants on the Oxygen Composition. Chem. Eur. J. 2012, 18 (42), 13453–13459. https://doi.org/10.1002/chem.201202320
[36] Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3 (9), 2653–2659. https://doi.org/10.1021/nn900227d
[37] Lin, Z. Functionalized Graphene for Energy Storage and Conversion. PhD Thesis, Georgia Institute of Technology, Atlanta (USA), 2014. http://hdl.handle.net/1853/51871
[38] Dewangan, R.; Asthana, A.; Singh, A.K.; Carabineiro, S.A.C. Control of Surface Functionalization of Graphene–Metal Oxide Polymer Nanocomposites Prepared by a Hydrothermal Method. Polym. Bull. 2021, 78 (8), 4665–4683. https://doi.org/10.1007/s00289-020-03342-w
[39] Murphy, H.; Papakonstantinou, P.; Okpalugo, T.I.T. Raman Study of Multiwalled Carbon Nanotubes Functionalized with Oxygen Groups. J. Vac. Sci. Technol. B:Nanotechnol. Microelectron. 2006, 24 (2), 715. https://doi.org/10.1116/1.2180257
[40] Jawhari, T.; Roid, A.; Casado, J. Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials. Carbon 1995, 33 (11), 1561–1565. https://doi.org/10.1016/0008-6223(95)00117-v
[41] Maultzsch, J.; Reich, S.; Thomsen, C.; Webster, S.; Czerw, R.; Carroll, D.L.; Vieira, S.M.; Birkett, P.R.; Rego, C.A. Raman Characterization of Boron-Doped Multiwalled Carbon Nanotubes. Appl. Phys. Lett. 2002, 81 (14), 2647–2649. https://doi.org/10.1063/1.1512330
[42] Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276–1290. https://doi.org/10.1039/b613962k
[43] Scheibe, B.; Borowiak-Palen, E.; Kalenczuk, R.J. Oxidation and Reduction of Multiwalled Carbon Nanotubes – Preparation and Characterization. Mater. Charact. 2010, 61 (2), 185–191. https://doi.org/10.1016/j.matchar.2009.11.008
[44] Omalanga, S.L. Effect of Functionalized Multiwalled Carbon Nanotubes on a Polysulfone Ultrafiltration Membrane. Master Thesis, University of Witwatersrand (South Africa), 2016. http://hdl.handle.net/10539/20018
[45] Das, R.; Hamid, S.; Ali, M.E.; Ramakrishna, S.; Yongzhi, W. Carbon Nanotubes Characterization by X-Ray Powder Diffraction – A Review. Curr. Nanosci. 2015, 11 (1), 23–35. https://doi.org/10.2174/1573413710666140818210043
[46] Shalaby, A.; Nihtianova, D.; Markov, P.; Staneva, A.D.; Iordanova, R.S.; Dimitriev, Y.B. Structural Analysis of Reduced Graphene Oxide by Transmission Electron Microscopy. Bulg. Chem. Commun. 2015, 47 (1), 291–295.
[47] Gong, W.; He, D.; Tao, J.; Zhao, P.; Kong, L.; Luo, Y.; Peng, Z.; Wang, H. Formation of Defects in the Graphite Oxidization Process: A Positron Study. RSC Adv. 2015, 5 (108), 88908–88914. https://doi.org/10.1039/c5ra14660g
[48] Dillon, A.C.; Gennett, T.; Jones, K.M.; Alleman, J.L.; Parilla, P.A.; Heben, M.J. A Simple and Complete Purification of Single-walled Carbon Nanotube Materials. Adv. Mater. 1999, 11 (16), 1354–1358. https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO;2-N
[49] Shrestha, S.; Choi, W.C.; Song, W.; Kwon, Y.T.; Shrestha, S.P.; Park, C.-Y. Preparation and Field Emission Properties of Er-Decorated Multiwalled Carbon Nanotubes. Carbon 2010, 48 (1), 54–59. https://doi.org/10.1016/j.carbon.2009.08.029
[50] Jeong, H.-K.; Lee, Y.P.; Jin, M. H.; Kim, E.S.; Bae, J.J.; Lee, Y.H. Thermal Stability of Graphite Oxide. Chem. Phys. Lett. 2009, 470 (4–6), 255–258. https://doi.org/10.1016/j.cplett.2009.01.050
[51] Wong, C.H.A.; Sofer, Z.; Kubešová, M.; Kučera, J.; Matějková, S.; Pumera, M. Synthetic Routes Contaminate Graphene Materials with a Whole Spectrum of Unanticipated Metallic Elements. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (38), 13774–13779. https://doi.org/10.1073/pnas.1413389111