Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars

2023;
: pp. 211 - 220
1
Lviv Polytechnic National University
2
Institute of Chemistry and Chemical Technology Lviv Polytechnic National University
3
Lviv Polytechnic National University, Danylo Halytsky Lviv National Medical University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University
7
Lviv Polytechnic National University

Three samples of bituminous material with different softening temperatures of 321, 332, and 356.4 K were obtained by the method of chemical modification of tar with formaldehyde using sulfuric acid as a catalyst. The determination of the group hydrocarbon composition was carried out for the raw materials of the modification process (tar) and the resulting bitumens. An FTIR study of the obtained groups of hydrocarbons (oil, resins, and asphaltenes) was also carried out. The structural transformations were investigated and a possible chemistry of the tar modification process with formaldehyde was proposed.

  1. Shukla, S.K.; Maithani, A.; Srivastava, D. Studies on the Effect of Concentration of Formaldehyde on the Synthesis of Resole-Type Epoxidized Phenolic Resin from Renewable Resource Material. Des. Monomers Polym. 2014, 17, 69-77. https://doi.org/10.1080/15685551.2013.840469
  2. Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and Physical Changes in Phenol-Formaldehyde Resol Resin, as a Function of the Degree of Condensation of the Resol Solution. Ind. Eng. Chem. Res. 2007, 46, 6916-6924. https://doi.org/10.1021/ie070297a
  3. Cheng, W.-C.; Kurth, M.J. The Zincke Reaction. A Review. Org. Prep. Proced. Int. 2002, 34, 585-608. https://doi.org/10.1080/00304940209355784
  4. Li, J.J. Zincke Reaction. In Name Reactions. A Collection of Detailed Mechanisms and Synthetic Applications; Springer, Cham., 2014; pp 656-658.
  5. Wurster, C. Die Constitution des Dinitrobenzols. Berichte der Deutschen Chemischen Gesellschaft 1874, 7, 148-152. https://doi.org/10.1002/cber.18740070154
  6. Bamford, H.; Simonsen, J. CCII.-The Constitution of the Ben-zenetetracarboxylic Acids. J. Chem. Soc., Trans. 1910, 97, 1904-1909. https://doi.org/10.1039/CT9109701904
  7. Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin. Adhesive Obtained From Bio-ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105.
  8. Krasinskyi, V.; Spišák, E.; Gajdoš, I.; Garbacz, T. Heat-Resistant Coatings on the Basis of Phenol-Formaldehyde Composi-tions. Materials Science Forum 2015, 818, 105-108. https://doi.org/10.4028/www.scientific.net/MSF.818.105
  9. Varlan, K.Ye.; Severenchuk, I.N.; Zubenko, A.E. Malovidkhodnyy protses otrymannya butylfenolformalʹdehidnoyi smoly dlya zakhysnykh pokrytʹ. Visnyk Dnipropetrovskoho universytetu 2017, 25, 58-64.
  10. Yang, S.; Zhang, Y.; Yuan, T.-Q.; Sun, R.-C. Lignin-Phenol-Formaldehyde Resin Adhesives Prepared with Biorefinery Technic-al Lignins. J. Appl. Polym. Sci. 2015, 132, 42493. https://doi.org/10.1002/app.42493
  11. Pyshyev, S.; Gunka, V.; Prysiazhnyi, Y.; Shevchuk, K.; Pattek-Janczyk, A. Study of the Oxidative Desulphurization Process of Coal with Different Metamorphism Degrees. J. Fuel Chem. Technol. 2012, 40, 129-137. https://doi.org/10.1016/S1872-5813(12)60009-7
  12. Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization 1. Influence of the Organic Matter. Chem. Chem. Technol. 2012, 6, 443-450. https://doi.org/10.23939/chcht06.04.443
  13. Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization. 2. Influence of the Inorganic Matter. Chem. Chem. Technol. 2013, 7, 327-334. https://doi.org/10.23939/chcht07.03.327
  14. Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
  15. Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
  16. Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429.
  17. Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
  18. Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219
  19. Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
  20. Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Tech-nol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
  21. Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
  22. Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
  23. Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
  24. Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
  25. Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206.
  26. Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212
  27. Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
  28. Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
  29. Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102.
  30. Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Braty-chak, M. Modified Phenol-Formaldehyde Resins and their Applica-tion in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
  31. Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
  32. Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
  33. EN 15326, Bitumen and bituminous binders. Bitumen and bituminous binders. Measurement of density and specific gravity, Capillary-stoppered pyknometer method, 2007.
  34. EN ISO 2592, Determination of flash and fire points - Cleveland open cup method, 2001.
  35. EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
  36. EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
  37. EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
  38. EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
  39. EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014.
  40. DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
  41. Marcusson, J. Der chemische Aufbau der Naturasphalte. Angew. Chem. 1916, 29, 346-351. https://doi.org/10.1002/ange.19160297303.