Optimization of Hydrolysis in Ethanol Production from Bamboo

: pp. 614 - 620
University of Gondar, Department of Chemical Engineering

This research involved optimizing acid hydrolysis in the development of ethanol, a promising alternative energy source for restricted crude oil, from lignocellulosic materials (bamboo). The conversion of bamboo to ethanol can mainly be accomplished through three process steps: pretreatment of bamboo wood for the removal of lignin and hemicellulose, acid hydrolysis of pretreated bamboo for the conversion of cellulose into sugar reduction (glucose) and fermentation of sugars into ethanol using anaerobic Saccharomyces cerevisiae. The effects of parameters (factors) in the hydrolysis step were investigated and the optimum combination of parameters values (temperature, time and acid concentration) was set by experimentation. Factorial design of three-factors-at-two-level with a replica of two (23 = 8, 8•2 = 16) was applied to the hydrolysis step to investigate the effect of hydrolysis parameters on the response variable (ethanol yield) using Design-Expert® 7 software.

[1] Wyman, C. Ethanol Production from Lignocellulosic Biomass: Overview. In Handbook on Bioethanol: Production and Utilization; Wyman C. (Ed.); Taylor & Francis: Washington, 1996; pp 1-18.
[2] Kullander, S. Energy from Biomass. Eur. Phys. J. ST 2009, 176, 115-125. https://doi.org/10.1140/epjst/e2009-01152-1
[3] Uriarte, F. Biofuels from Plant Oils; ASEAN Foundation: Jakarta, Indonesia, 2010.
[4] Chandel, A.K.; Chan, E.S.; Rudravaram, R.; Lakshmi Narasu, M.; Venkateswar Rao, L.; Ravindra, P. Economics and Environmental Impact of Bioethanol Production Technologies: an Appraisal. Biotechnol. Mol. Bio. Rev. 2007, 2, 014. https://academicjournals.org/journal/BMBR/edition/February_2007
[5] Balat, M.; Balat, H. Recent Trends in Global Production and Utilization of Bio-Ethanol Fuel. Appl. Energ. 2009, 86, 2273-2282. https://doi.org/10.1016/j.apenergy.2009.03.015
[6] Lynd, L.R.; Cushman, J.H.; Nichols, R., Wyman, C.: Fuel Ethanol from Cellulosic Biomass. Science 1991, 251, 1318-1323. https://doi.org/10.1126/science.251.4999.1318
[7] Nanda, S. Kozinski, J.A.; Dalai, A.K. Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products. Curr. Biochem. Eng. 2016, 3, 24. https://doi.org/10.2174/2213385203666150219232000
[8] Liebman, A.; Einav, T. Bamboo: An Untapped and Amazing Resource. UNIDO features, 2009. http://www.unido.org/index.php?id=1000276
[9] Kesharwani, R.; Sun, Z.; Dagli, C.; Xiong, H. Moving Second Generation Biofuel Manufacturing Forward: Investigating Economic Viability and Environmental Sustainability Considering Two Strategies for Supply Chain Restructuring. Appl. Energ. 2019, 242, 1467-1496. https://doi.org/10.1016/j.apenergy.2019.03.098
[10] Li, Y.; Kesharwani, R.; Sun, Z.; Qin, R.; Dagli, C.; Zhang, M.; Wang, D. Economic Viability and Environmental Impact Investigation for the Biofuel Supply Chain Using Co-Fermentation Technology. Appl Energ. 2020, 259, 114235. https://doi.org/10.1016/j.apenergy.2019.114235
[11] Ng, R.T.L.; Maravelias, C.T. Design of Biofuel Supply Chains with Variable Regional Depot and Biorefinery Locations. Renew. Energ. 2017, 100, 90-102. https://doi.org/10.1016/j.renene.2016.05.009
[12] Kang, S.; Heo, S.; Realff, M.J.; Lee, J.H. Three-Stage Design of High-Resolution Microalgae-Based Biofuel Supply Chain Using Geographic Information System. Appl Energ. 2020, 265, 114773. https://doi.org/10.1016/j.apenergy.2020.114773
[13] Sharma, B.H.; Yu., T.E.; English, B.C.; Boyer, C.N.; Larson, J.A. Stochastic Optimization of Cellulosic Biofuel Supply Chain Incorporating Feedstock Yield Uncertainty. Energy Procedia 2019, 158, 1009-1014. https://doi.org/10.1016/j.egypro.2019.01.245
[14] You, F.; Wang, B. Optimal Design and Operations of Cellulosic Biofuel Supply Chains under Uncertainty, 11AIChE - 2011 AIChE Annual Meeting, Oct 16. 2011 - Oct 21. 2011; Minneapolis, MN, USA, 2011
[15] Yu, T.E.; English, B.C.; He, L.; Larson, J.A.; Calcagno, J.; Fu, J.S.; Wilson, B. Analyzing Economic and Environmental Performance of Switchgrass Biofuel Supply Chains. Bioenerg. Res. 2016, 9, 566-577. https://doi.org/10.1007/s12155-015-9699-6
[16] Alves, C.M.; Valk, M.; de Jong, S.; Bonomi, A.; van der Wielen, L.A.M.; Mussatto, S.I. Techno-Economic Assessment of Biorefinery Technologies for Aviation Biofuels Supply Chains in Brazil. Biofuel., Bioprod., Bior. 2017, 11, 67-91. https://doi.org/10.1002/bbb.1711
[17] Zhang, F.; Johnson, D.M.; Wang, J. Integrating Multimodal Transport into Forest-Delivered Biofuel Supply Chain Design. Renew Energy 2016, 93, 58-67. https://doi.org/10.1016/j.renene.2016.02.047
[18] Marufuzzaman, M.; Ekşioğlu, S.D. Designing a Reliable and Dynamic Multimodal Transportation Network for Biofuel Supply Chains. Transp. Sci. 2017, 51, 494–517. https://doi.org/10.1287/trsc.2015.0632
[19] Gregg, J.S.; Bolwig, S.; Hansen, T.; Solér, O.; Ben Amer-Allam, S.; Pladevall Viladecans, J.; Klitkou, A.; Fevolden, A. Value Chain Structures that Define European Cellulosic Ethanol Production. Sustainability 2017, 9, 118. https://doi.org/10.3390/su9010118
[20] Santibañez-Aguilar, J.; Guillen-Gosálbez, G.; Morales-Rodriguez, R.; Jiménez-Esteller, L.; Castro-Montoya, A.J.; Ponce-Ortega, J.M. Financial Risk Assessment and Optimal Planning of Biofuels Supply Chains under Uncertainty. Bioenerg. Res. 2016, 9, 1053-1069. https://doi.org/10.1007/s12155-016-9743-1
[21] Li, Y.; Tseng, C.-L.; Hu, G. Is Now a Good Time for Iowa to Invest in Cellulosic Biofuels? A Real Options Approach Considering Construction Lead Times. Int. J. Prod. Econ. 2015, 167, 97-107. https://doi.org/10.1016/j.ijpe.2015.05.019
[22] Ge, Y.; Li, L. System-Level Energy Consumption Modeling and Optimization for Cellulosic Biofuel Production. Appl. Energ. 2018, 226, 935-946. https://doi.org/10.1016/j.apenergy.2018.06.020
[23] Eggeman, T.; Elander, R.T. Process and Economic Analysis of Pretreatment Technologies. Biores. Technol. 2005, 96, 2019-2025. https://doi.org/10.1016/j.biortech.2005.01.017
[24] Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An Overlooked Biomass Resource? Biomass Bioenerg. 2000, 19, 229-244. https://doi.org/10.1016/S0961-9534(00)00038-6
[25] Rogers, P.L.; Jeon, Y.J.; Lee, K.J.; Lawford, H.G. Zymomonas Mobilis for Fuel Ethanol and Higher Value Products. Adv. Biochem. Eng. Biotechnol. 2007, 108, 263-288. https://doi.org/10.1007/10_2007_060
[26] Ogawa Masami, G.O.; Yukinari Usui, I.; Urano, N. Ethanol Production from the Water Hyacinth Eichhornia crassipes by Yeast Isolated from Various Hydrospheres. Afr. J. Microbiol. Res. 2008, 2, 110. http://www.academicjournals.org/ajmr
[27] Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat. Resour. Res. 2005, 14, 65-76. https://doi.org/10.1007/s11053-005-4679-8
[28] Swings, J.; De Ley, J. The Biology of Zymomonas. Bacterial Rev. 1977, 41, 1. https://doi.org/10.1128/BR.41.1.1-46.1977
[29] Embaye, K. The Indigenous Bamboo Forests of Ethiopia: An Overview. J. Human Environ. 2000, 29, 518-521. https://doi.org/10.1579/0044-7447-29.8.518
[30] Chapple, C.; Ladisch, M.; Meilan, R. Loosening Lignin's Grip on Biofuel Production. Nat. Biotechnol. 2007, 25, 746-748. https://doi.org/10.1038/nbt0707-746