Досліджено оптимізацію кислотного гідролізу при виробництві етанолу, перспективного альтернативного палива, з лігноцелюлозних матеріалів (бамбука). Показано, що перетворення бамбука в етанол може бути здійснено трьома етапами: попереднє оброблення деревини бамбука для видалення лігніну та геміцелюлози, кислотного гідролізу попередньо обробленого бамбука для перетворення целюлози у відновлений цукор (глюкозу) та бродіння цукру з утворенням етанолу з використанням анаеробних бактерій Saccharomyces cerevisiae. Досліджено вплив параметрів на стадії гідролізу та експериментально встановлено оптимальні параметри (температура, час та концентрація кислоти). Вплив параметрів гідролізу на вихід етанолу встановлено за допомогою 3*2 факторного експерименту з використанням програмного забезпечення Design-Expert® 7.
[1] Wyman, C. Ethanol Production from Lignocellulosic Biomass: Overview. In Handbook on Bioethanol: Production and Utilization; Wyman C. (Ed.); Taylor & Francis: Washington, 1996; pp 1-18.
[2] Kullander, S. Energy from Biomass. Eur. Phys. J. ST 2009, 176, 115-125. https://doi.org/10.1140/epjst/e2009-01152-1
[3] Uriarte, F. Biofuels from Plant Oils; ASEAN Foundation: Jakarta, Indonesia, 2010.
[4] Chandel, A.K.; Chan, E.S.; Rudravaram, R.; Lakshmi Narasu, M.; Venkateswar Rao, L.; Ravindra, P. Economics and Environmental Impact of Bioethanol Production Technologies: an Appraisal. Biotechnol. Mol. Bio. Rev. 2007, 2, 014. https://academicjournals.org/journal/BMBR/edition/February_2007
[5] Balat, M.; Balat, H. Recent Trends in Global Production and Utilization of Bio-Ethanol Fuel. Appl. Energ. 2009, 86, 2273-2282. https://doi.org/10.1016/j.apenergy.2009.03.015
[6] Lynd, L.R.; Cushman, J.H.; Nichols, R., Wyman, C.: Fuel Ethanol from Cellulosic Biomass. Science 1991, 251, 1318-1323. https://doi.org/10.1126/science.251.4999.1318
[7] Nanda, S. Kozinski, J.A.; Dalai, A.K. Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products. Curr. Biochem. Eng. 2016, 3, 24. https://doi.org/10.2174/2213385203666150219232000
[8] Liebman, A.; Einav, T. Bamboo: An Untapped and Amazing Resource. UNIDO features, 2009. http://www.unido.org/index.php?id=1000276
[9] Kesharwani, R.; Sun, Z.; Dagli, C.; Xiong, H. Moving Second Generation Biofuel Manufacturing Forward: Investigating Economic Viability and Environmental Sustainability Considering Two Strategies for Supply Chain Restructuring. Appl. Energ. 2019, 242, 1467-1496. https://doi.org/10.1016/j.apenergy.2019.03.098
[10] Li, Y.; Kesharwani, R.; Sun, Z.; Qin, R.; Dagli, C.; Zhang, M.; Wang, D. Economic Viability and Environmental Impact Investigation for the Biofuel Supply Chain Using Co-Fermentation Technology. Appl Energ. 2020, 259, 114235. https://doi.org/10.1016/j.apenergy.2019.114235
[11] Ng, R.T.L.; Maravelias, C.T. Design of Biofuel Supply Chains with Variable Regional Depot and Biorefinery Locations. Renew. Energ. 2017, 100, 90-102. https://doi.org/10.1016/j.renene.2016.05.009
[12] Kang, S.; Heo, S.; Realff, M.J.; Lee, J.H. Three-Stage Design of High-Resolution Microalgae-Based Biofuel Supply Chain Using Geographic Information System. Appl Energ. 2020, 265, 114773. https://doi.org/10.1016/j.apenergy.2020.114773
[13] Sharma, B.H.; Yu., T.E.; English, B.C.; Boyer, C.N.; Larson, J.A. Stochastic Optimization of Cellulosic Biofuel Supply Chain Incorporating Feedstock Yield Uncertainty. Energy Procedia 2019, 158, 1009-1014. https://doi.org/10.1016/j.egypro.2019.01.245
[14] You, F.; Wang, B. Optimal Design and Operations of Cellulosic Biofuel Supply Chains under Uncertainty, 11AIChE - 2011 AIChE Annual Meeting, Oct 16. 2011 - Oct 21. 2011; Minneapolis, MN, USA, 2011
https://www.scholars.northwestern.edu/en/publications/optimal-design-and...
[15] Yu, T.E.; English, B.C.; He, L.; Larson, J.A.; Calcagno, J.; Fu, J.S.; Wilson, B. Analyzing Economic and Environmental Performance of Switchgrass Biofuel Supply Chains. Bioenerg. Res. 2016, 9, 566-577. https://doi.org/10.1007/s12155-015-9699-6
[16] Alves, C.M.; Valk, M.; de Jong, S.; Bonomi, A.; van der Wielen, L.A.M.; Mussatto, S.I. Techno-Economic Assessment of Biorefinery Technologies for Aviation Biofuels Supply Chains in Brazil. Biofuel., Bioprod., Bior. 2017, 11, 67-91. https://doi.org/10.1002/bbb.1711
[17] Zhang, F.; Johnson, D.M.; Wang, J. Integrating Multimodal Transport into Forest-Delivered Biofuel Supply Chain Design. Renew Energy 2016, 93, 58-67. https://doi.org/10.1016/j.renene.2016.02.047
[18] Marufuzzaman, M.; Ekşioğlu, S.D. Designing a Reliable and Dynamic Multimodal Transportation Network for Biofuel Supply Chains. Transp. Sci. 2017, 51, 494–517. https://doi.org/10.1287/trsc.2015.0632
[19] Gregg, J.S.; Bolwig, S.; Hansen, T.; Solér, O.; Ben Amer-Allam, S.; Pladevall Viladecans, J.; Klitkou, A.; Fevolden, A. Value Chain Structures that Define European Cellulosic Ethanol Production. Sustainability 2017, 9, 118. https://doi.org/10.3390/su9010118
[20] Santibañez-Aguilar, J.; Guillen-Gosálbez, G.; Morales-Rodriguez, R.; Jiménez-Esteller, L.; Castro-Montoya, A.J.; Ponce-Ortega, J.M. Financial Risk Assessment and Optimal Planning of Biofuels Supply Chains under Uncertainty. Bioenerg. Res. 2016, 9, 1053-1069. https://doi.org/10.1007/s12155-016-9743-1
[21] Li, Y.; Tseng, C.-L.; Hu, G. Is Now a Good Time for Iowa to Invest in Cellulosic Biofuels? A Real Options Approach Considering Construction Lead Times. Int. J. Prod. Econ. 2015, 167, 97-107. https://doi.org/10.1016/j.ijpe.2015.05.019
[22] Ge, Y.; Li, L. System-Level Energy Consumption Modeling and Optimization for Cellulosic Biofuel Production. Appl. Energ. 2018, 226, 935-946. https://doi.org/10.1016/j.apenergy.2018.06.020
[23] Eggeman, T.; Elander, R.T. Process and Economic Analysis of Pretreatment Technologies. Biores. Technol. 2005, 96, 2019-2025. https://doi.org/10.1016/j.biortech.2005.01.017
[24] Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An Overlooked Biomass Resource? Biomass Bioenerg. 2000, 19, 229-244. https://doi.org/10.1016/S0961-9534(00)00038-6
[25] Rogers, P.L.; Jeon, Y.J.; Lee, K.J.; Lawford, H.G. Zymomonas Mobilis for Fuel Ethanol and Higher Value Products. Adv. Biochem. Eng. Biotechnol. 2007, 108, 263-288. https://doi.org/10.1007/10_2007_060
[26] Ogawa Masami, G.O.; Yukinari Usui, I.; Urano, N. Ethanol Production from the Water Hyacinth Eichhornia crassipes by Yeast Isolated from Various Hydrospheres. Afr. J. Microbiol. Res. 2008, 2, 110. http://www.academicjournals.org/ajmr
[27] Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat. Resour. Res. 2005, 14, 65-76. https://doi.org/10.1007/s11053-005-4679-8
[28] Swings, J.; De Ley, J. The Biology of Zymomonas. Bacterial Rev. 1977, 41, 1. https://doi.org/10.1128/BR.41.1.1-46.1977
[29] Embaye, K. The Indigenous Bamboo Forests of Ethiopia: An Overview. J. Human Environ. 2000, 29, 518-521. https://doi.org/10.1579/0044-7447-29.8.518
[30] Chapple, C.; Ladisch, M.; Meilan, R. Loosening Lignin's Grip on Biofuel Production. Nat. Biotechnol. 2007, 25, 746-748. https://doi.org/10.1038/nbt0707-746