Реакція Фріделя-Крафтса вінілтриметоксисилану зі стиреном та композитні матеріали на їхній основі

2023;
: cc. 325 - 338
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University
4
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
5
Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy
6
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy,
7
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University

Здійснено алкілування стирену вінілтриметоксисиланом за реакцію Фріделя-Крафтса в присутності безводного AlCl3. Отримано алкокси(4-вінілфенетил)силан. Синтезовані продукти ідентифікували за допомогою 1H, 13C, COSY ЯМР та FTIR спектроскопії. Обговорено розрахунки з використанням методу квантово-хімічної неемпіричної теорії функціоналу густини (DFT) для реакції між вінілтриметоксисиланом і стиреном, здійсненої за орто-, мета- і пара-положеннями. Для теоретичного моделювання використовували програму онлайн-прогнозування "Priroda 04: A quantum-chemical program suite". За різних температур і тисків методом гарячого пресування або екструзії були одержані композиційні матеріали на основі деревної тирси різної дисперсності та синтезованого триметоксисилілованого стирену як в'яжучого й армувального агента зі ступенями силілування (5 %) у присутності різноманітних органічних/неорганічних добавок, антипіренів та антиоксидантів. Досліджено фізико-механічні властивості композитів.

  1. The Chemistry and Physics of Coatings; Marrion, A., Ed.; The Royal Society of Chemistry: Cambridge, 2004.
  2. Organic Coatings: Science and Technology; Wicks, Z.W., Jones, F.N.; Pappas, S.P.; Wicks, D.A., Eds.; John Wiley & Sons: New Jersey, 2007.
  3. High-performance organic coatings; Khanna, A.S., Ed.; CRC Press: Florida, 2008.
  4. Talbert, R. Paint Technology Handbook; CRC Press: Florida, 2008. https://doi.org/10.1201/9781420017786
  5. Hybrid Materials: Synthesis, Characterization and Applications; Kickelbick, G., Ed.; WILEY-VCH: Weinheim, 2007.
  6. Tsujimoto, T.; Uyama, H.; Kobayashi, S. Synthesis of High-Performance Green Nanocomposites from Renewable Natural Oils. Polym. Degrad. Stab. 2010, 95, 1399-1405. https://doi.org/10.1016/j.polymdegradstab.2010.01.016
  7. Tsujimoto, T.; Uyama, H.; Kobayashi, S. Green Nanocompo-sites from Renewable Resources: Biodegradable Plant Oil-Silica Hybrid Coatings. Macromol. Rapid Commun. 2003, 24, 711-714. https://doi.org/10.1002/marc.200350015
  8. Xia, Y.; Larock, R.C. Vegetable Oil-Based Polymeric Materials: Synthesis, Properties, and Applications. Green Chem. 2010, 12, 1893-1909. https://doi.org/10.1039/C0GC00264J
  9. Galià, M.; de Espinosa, L.M.; Ronda, J.C.; Lligadas, G.; Cádiz, V. Vegetable Oil-Based Thermosetting Polymers. Eur. J. Lipid Sci. Technol. 2010, 112, 87-96. https://doi.org/10.1002/ejlt.200900096
  10. Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Re-sources. Synthesis and Properties. Biomacromolecules 2006, 7, 2420-2426. https://doi.org/10.1021/bm060402k
  11. Bailey's Industrial Oil and Fat Products. Volume 6. Industrial and Nonedible Products from Oils and Fats; Shahidi, F., Ed.; John Wiley&Sons: New Jersey, 2005.
  12. Tasdelen-Yucedag, C.; Erciyes, A.T. Modification of Polyca-prolactone-Styrene-Vinyl Trimethoxysilane Terpolymer with Sun-flower Oil for Coating Purposes. Prog. Org. Coat. 2014, 77, 1750-1760. https://doi.org/10.1016/j.porgcoat.2014.05.024
  13. Jingzhou Jianghan Fine Chemical Co Ltd. Synthesis Method of Vinyltrimethoxysilane Oligomer. CN103396434A, November 20, 2013.
  14. Singha, A.S.; Rana, R.K. Natural Fiber Reinforced Polystyrene Composites: Effect of Fiber Loading, Fiber Dimensions and Surface Modification on Mechanical Properties. Mater. Des. 2012, 41, 289-297. http://dx.doi.org/10.1016%2Fj.matdes.2012.05.001
  15. Sreenivasan, V.S.; Ravindran, D.; Manikandan, V.; Narayana-samy, R. Influence of Fibre Treatments on Mechanical Properties of Short Sansevieria cylindrica/Polyester Composites. Mater. Des. 2012, 37, 111-121. https://doi.org/10.1016/J.MATDES.2012.01.004
  16. Arrakhiz, F.Z.; El Achaby, M.; Kakou, A.C.; Vaudreuil, S.; Benmoussa, K.; Bouhfid, R.; Fassi-Fehri, O.; Qaiss, A. Mechanical Properties of High Density Polyethene Reinforced with Chemically Modified Coir Fibers: Impact of Chemical Treatments. Mater. Des. 2012, 37, 379-383. https://doi.org/10.1016/j.matdes.2012.01.020
  17. Massoodi, R.; El Hajjar, R.F.; Pillai, K.M.; Sabo, R. Mechani-cal Characterization of Cellulose Nanofiber and Biobased Epoxy Composites. Mater. Des. 2012, 36, 570-576. http://dx.doi.org/10.1016%2Fj.matdes.2011.11.042
  18. Yang, H.S.; Kim, H.J.; Park, H.J.; Lee, B.J.; Hwang, T.S. Effect of Compatibility Agents on Rice Husk Flour Reinforced Polypropylene Composites. Compos. Struct. 2007, 77, 45-55. https://doi.org/10.1016/j.compstruct.2005.06.005
  19. Kim, H.-S.; Yang, H.-S.; Kim, H.-J. Biodegradability and Mechanical Properties of Agro Flour Filled Polybutylene Succinate Biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513-1521. https://doi.org/10.1002/app.21905
  20. Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24, 694-698. http://dx.doi.org/10.1016/j.polymertesting.2005.05.004
  21. Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322. http://dx.doi.org/10.1016/j.matdes.2011.09.023
  22. Amin, S.; Amin, M. Thermoplastic Elastomeric (TPE) Mate-rials and their Use in Outdoor Electrical Insulation. Rev. Adv. Mater. Sci. 2011, 29, 15-30.
  23. Biron, M. Thermoplastics and Thermoplastic Composites. Technical Information for Plastics Users; Oxford: Butterworth-Heinemann, 2007.
  24. Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54, 207-214. https://doi.org/10.1016/S0263-8223(01)00089-7
  25. Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864
  26. Katz, H.S.; Milevski, J.V. Handbook of Fillers for Plastics; RAPRA: New York, 1987.
  27. Mareri, P.; Bastide, S.; Binda, N.; Crespi, A. Mechanical Behaviour of Polypropylene Composites Containing Fine Mineral Filler: Effect of Filler Surface Treatment. Compos. Sci. Technol. 1998, 58, 747-752. https://doi.org/10.1016/S0266-3538(97)00156-5
  28. Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites: Effect of Maleated PP. Mater. Res. 2009, 12, 333. https://doi.org/10.1590/S1516-14392009000300014
  29. Tatrishvili, T.; Koberidze, Kh.; Mukbaniani, O. Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Proceedings of the Georgian National Academy of Sciences 2007, 35, 297-300.
  30. Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calcula-tions for Hydrosilylation Reaction of Methyldimethoxysilane with Hexane-1. Proceedings of the Georgian Academy of Science 2006, 32, 109-114.
  31. Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O. AM1 Calcula-tions for Hydride Addition Reaction of Methyldimethoxysilane with Styrene. Georgian Chemical Journal 2006, 6, 58-59.
  32. Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S. Hydrosilylation Reactions of α,ω-Bis(trimethylsiloxy) methylhydri-desiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal 2006, 6, 254-255.
  33. Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reac-tion Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7, 669-676. https://doi.org/10.1021/ct1006604
  34. Wałęsa, R.; Kupka, T.; Broda, M.A. Density Functional Theory (DFT) Prediction of Structural and Spectroscopic Parameters of Cytosine Using Harmonic and Anharmonic Approximations. Struct. Chem. 2015, 26, 1083-1093. https://doi.org/10.1007/s11224-015-0573-0
  35. Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546
  36. Kirste, B. Applications of Density Functional Theory to Theo-retical Organic Chemistry. Chem. Sci. 2016, 7, 1000127. https://refubium.fu-berlin.de/handle/fub188/15854
  37. Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201
  38. Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani. N. Synthesis of Trie-thoxy(Vinylphenethyl)Silane with Alkylation Reaction of Vinyltrie-thoxysilane to Styrene. Oxid. Commun. 2022, 45, 309-320.
  39. Demchuk, Yu.; Gunka, V.; Pyshyiv, S.; Sidun, Yu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
  40. Bashta, B.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8, 309-316. https://doi.org/10.23939/chcht08.03.309
  41. Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phe-nomenon during Drop Impact Testing and Its Simple Dynamics Model. World Journal of Mechanics 2015, 5, 33-41. http://dx.doi.org/10.4236/wjm.2015.53004
  42. Titvinidze, G.; Tatrishvili, T.; Mukbaniani, O. Chemical Mod-ification of Styrene with Vinyl Containing Organosiloxane via Diels-Alder Reactions. Abstracts of Communications of Interna-tional Conference Enikolopov's Readings, Erevan, Armenia, 4-7 October, 2006; p. 74.
  43. Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, USA, 2016.
  44. Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. US 0225233A1, 2012.
  45. Smith, B.C. Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy 2016, 31, 36-39.
  46. https://www.nmrdb.org/13c/index.shtml?v=v2.121.0
  47. https://docs.chemaxon.com/display/docs/nmr-predictor.md
  48. ChemBioDraw Ultra 12. https://www.perkinelmer.com/Product/chemoffice-plus-cloud-[31]. [30]. chemofficepc?fbclid=IwAR2M_sx_7vTofwMAugXMb0M4xbyylkyHa4xt0jcRdrETOC8qDtpmSHjdudA
  49. MestreNova. https://mestrelab.com/software/mnova/nmr/
  50. Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Markarashvili, E.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499
  51. Febrianto, F.; Yoshioka, M.; Nagai, Y.; Mihara, M.; Shiraishi, N. Composites of Wood and Trans-1,4-isoprene Rubber II: Processing Conditions for Production of the Composites. Wood Sci. Technol. 2001, 35, 297-310. https://doi.org/10.1007/s002260100102
  52. Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386. https://doi.org/10.23939/chcht16.03.377
  53. Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Trie-thoxy(Vinylphenethyl)Silane. Chem. Chem. Technol. 2023, 17, 35-44. https://doi.org/10.23939/chcht17.01.035
  54. Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Educ. 2012, 34, 69-94.