Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen

2023;
: pp. 681 - 687
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, Danylo Halytsky Lviv National Medical University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University, department of Highways and Bridges

The possibility of using potassium humate as an inhibitor of the technological aging of oxidized petro-leum bitumen has been investigated. Samples of potas-sium humate obtained from various raw materials, in particular peat and leonardite, were selected and compared. Aging coefficients have been calculated and operational properties of modified bitumen as a binding material for hot mix asphalt have been investigated. It was established that 3.0 wt. % of PH-3 added to oxidized petroleum bitumen, slows down the technological aging processes and allows obtaining asphalt concrete with better characteristics compared to the coating made on the basis of unmodified bitumen.

  1. Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593-609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
  2. Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012, 97, 678-684. https://doi.org/10.1016/j.fuel.2012.02.028
  3. Apeagyei, A. Laboratory evaluation of antioxidants for asphalt binders. Constr. Build. Mater. 2011, 25, 47-53. https://doi.org/10.1016/j.conbuildmat.2010.06.058
  4. Isacsson, U.; Zeng, H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Constr. Build. Mater. 1997, 11, 83-91. https://doi.org/10.1016/S0950-0618(97)00008-1
  5. Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of oxidization of crumb rubber-modified asphalt during short-term aging. J. Transp. Res. Board 2015, 2505, 84-91.
  6. Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Jornada Nacional ASEFMA. 2010, V, 227-238.
  7. Ouyang, C.; Wang, S.; Zhang, Y. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. J. Appl. Polym. Sci. 2006, 91, 795-804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009
  8. Banerjee, A.; Smit, A.; Prozzi, J. The effect of long-term aging on the rheology of warm mix asphalt binders. Fuel 2012, 97, 603-611. https://doi.org/10.1016/j.fuel.2012.01.072
  9. Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-oxidants’ effect on bitumen rheology and mixes’ mechanical performance. Innovative Mater. Des. Sustainable Transp. Infrast. 2015, 8-18.
  10. Martin, K. Laboratory evaluation of antioxidants for bitumen. Proc. Aust. Road Res. Board 1968, 2, 431.
  11. Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of antioxi-dant-enhanced polymers in bitumen rheology and bituminous con-crete mixtures mechanical performance. Adv. Mater. Sci. Eng. 2015, 1-9. https://doi.org/10.1155/2015/214585
  12. Petersen, J. A Review of the Fundamentals of Asphalt Oxida-tion: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. Transportation Research Circu-lar 2009, E-C140, 1-78. https://onlinepubs.trb.org/onlinepubs/circulars/ec140.pdf
  13. Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539-544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
  14. Cavalcante, L.; Soares, S.; Soares, J. Characterization and thermal behavior of polymer-modified asphalt. Mater. Res. 2004, 7, 529-534. https://doi.org/10.1590/S1516-14392004000400004
  15. Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
  16. Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
  17. Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
  18. Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of phenol-cresol-formaldehyde resin on adhesive and physi-co-mechanical properties of road bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
  19. Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry surfacing mixes on the basis of bitumen modified with phenol-cresol-formaldehyde resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
  20. Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1-13. https://doi.org/10.3390/app8081405
  21. Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of petroleum bitumen resistance to aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
  22. Donchenko, M.; Grynyshyn, O. Investigation of resistance of modified bitumens to technological aging. Chemistry, technology and application of substances 2022, 5, 56-60. https://doi.org/10.23939/ctas2022.01.056
  23. Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal. 2021, 63, 953-962.
  24. EN 1427:2015, Bitumen and bituminous binders. Determina-tion of the softening point. Ring and Ball method, 2015.
  25. EN 1426:2015, Bitumen and bituminous binders. Determina-tion of needle penetration, 2015.
  26. Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918.
  27. EN 12607-1:2014, Bitumen and bituminous binders. Determi-nation of the resistance to hardening under influence of heat and air RTFOT method, 2014.