magnetical nanocomposite based on sawdust, magnetic nanoparticles, and polyethylenimine was prepared to remove Pb(II), Cd(II) and Cu(II) ions from an aqueous solution. Adsorption on nanocomposite exhibited a maximum removal of 97% for Pb(II). The adsorption capacity in the pseudo-second-order model for Pb(II) was studied and the value of 1.48 mg/g was obtained.
- Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J. Comparative and Competitive Adsorption of Pb (II) and Cu (II) Using Tetraethylenepentamine Modified Chitosan/CoFe2O4 Particles. J. Hazard. Mater. 2017, 326, 211-220. https://doi.org/10.1016/j.jhazmat.2016.12.036
- Qi, Y.; Wang, J.; Wang, X.; Cheng, J.J.; Wen, Z. Selective Adsorption of Pb(II) from Aqueous Solution Using Porous Biosilica Extracted from Marine Diatom Biomass: Properties and Mechanism. Appl. Surf. Sci. 2017, 396, 965-977. https://doi.org/10.1016/j.apsusc.2016.11.069
- Shachneva, E.; Archibasova D. Adsorption of Cadmium Ions from Aqueous Solutions on Modified Sorbents. Chem. Chem. Technol. 2018, 12, 182-187. https://doi.org/10.23939/chcht12.02.182
- Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Jannesar, R.; Montazerozohori, M.; Pourebrahim, F.; Zare, M.A. Simultaneous Removal of Cd (II), Ni (II), Pb (II) and Cu (II) Ions via their Complexation with HBANSA Based on a Combined Ultrasound-Assisted and Cloud Point Adsorption Method Using CSG-BiPO4/FePO4 as Novel Adsorbent: FAAS Detection and Optimization Process. J. Colloid Interface Sci. 2017, 500, 241-252. https://doi.org/10.1016/j.jcis.2017.03.070
- Abdelhafez, A.A.; Li, J. Removal of Pb (II) from Aqueous Solution by Using Biochars Derived from Sugar Cane Bagasse and Orange Peel. J Taiwan Inst Chem Eng 2016, 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005
- Shirzadi, H.; Nezamzadeh-Ejhieh, A. An Efficient Modified Zeolite for Simultaneous Removal of Pb (II) and Hg (II) from Aqueous Solution. J. Mol. Liq. 2017, 230, 221-229. https://doi.org/10.1016/j.molliq.2017.01.029
- Xu, X.; Li, H.; Wang, Q.; Li, D.; Han, X.; Yu, H. A Facile Approach for Surface Alteration of Pseudomonas putida I3 by Supplying K2SO4 into Growth Medium: Enhanced Removal of Pb (II) from Aqueous Solution. Bioresour. Technol. 2017, 232, 79-86. https://doi.org/10.1016/j.biortech.2017.02.038
- Ince, O.K.; Ince, M.; Yonten, V.; Goksu, A. A Food Waste Utilization Study for Removing Lead (II) from Drinks. Food Chem. 2017, 214, 637-643. https://doi.org/10.1016/j.foodchem.2016.07.117
- Ghasemi, E.; Heydari, A.; Sillanpää, M. Superparamagnetic Fe3O4@ EDTA Nanoparticles as an Efficient Adsorbent for Simultaneous Removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from Water and Soil Environmental Samples. Microchem. J. 2017, 131, 51-56. https://doi.org/10.1016/j.microc.2016.11.011
- Fu, R.; Liu, Y.; Lou, Z.; Wang, Z.; Baig, S.A.; Xu, X. Adsorptive Removal of Pb (II) by Magnetic Activated Carbon Incorporated with Amino Groups from Aqueous Solutions. J Taiwan Inst Chem Eng 2016, 62, 247-258. https://doi.org/10.1016/j.jtice.2016.02.012
- Parlayıcı, Ş.; Pehlivan, E. Removal of Metals by Fe3O4 Loaded Activated Carbon Prepared from plum stone (Prunus nigra): Kinetics and Modelling Study. Powder Technol. 2017, 317, 23-30. https://doi.org/10.1016/j.powtec.2017.04.021
- Balaji, T.; Sasidharan, M.; Matsunaga, H. Naked Eye Detection of Cadmium Using Inorganic–Organic Hybrid Mesoporous Material. Anal Bioanal Chem 2006, 384, 488–494. https://doi.org/10.1007/s00216-005-0187-2
- Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. https://doi.org/10.1016/j.jclepro.2021.129879
- Yoo, J.-C.; Lee, C.; Lee, J.-S.; Baek, K. Simultaneous Application of Chemical Oxidation and Extraction Processes is Effective at Remediating Soil Co-contaminated with Petroleum and Heavy Metals. J. Environ. Manage. 2017, 186, 314-319. https://doi.org/10.1016/j.jenvman.2016.03.016
- Bassam, R. Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic. Materials Today: Proceedings, 2021.
- Mobasherpour, I.; Javaherai, M.; Salahi, E.; Ebrahimi, M.; Ashrafi, Z.; Orooji, Y. Removal of Pb(II) from Aqueous Solution by Ceramsite Prepared from Isfahan Bentonite and γ-Alumina. Chem. Chem. Technol. 2021, 15, 263–273. https://doi.org/10.23939/chcht15.02.263
- Khademolhosseini, M.R.; Mobasherpour, I.; Ghahremani, D. Lead Adsorption by Nano-Hydroxyapatite Granules in a Fixed-Bed Column. Chem. Chem. Technol. 2018, 12, 372-378. https://doi.org/10.23939/chcht12.03.372
- Yang, L.; Hu, W.; Chang, Z.; Liu, T.; Fang, D.; Shao, P.; Shi, H.; Luo, X. Electrochemical Recovery and High Value-Added Reutilization of Heavy Metal Ions from Wastewater: Recent Advances and Future Trends. Environ Int 2021, 152, 106512. https://doi.org/10.1016/j.envint.2021.106512
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H.; Chang, J.-S. Microalgal Biosorption of Heavy Metals: A Comprehensive Bibliometric Review. J. Hazard. Mater. 2021, 402, 123431. https://doi.org/10.1016/j.jhazmat.2020.123431
- Syukor, A.A.; Sulaiman, S.; Siddique, M.N.I.; Zularisam, A.W.; Said, M.I.M. Integration of Phytogreen for Heavy Metal Removal from Wastewater. J. Clean. Prod. 2016, 112, 3124-3131. https://doi.org/10.1016/j.jclepro.2015.10.103
- Cao, D.-Q.; Song, X.; Fang, X.-M.; Yang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Membrane Filtration-Based Recovery of Extracellular Polymer Substances from Excess Sludge and Analysis of their Heavy Metal Ion Adsorption Properties. Chem. Eng. J. 2018, 354, 866-874. https://doi.org/10.1016/j.cej.2018.08.121
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Experiment and Modeling for Flux and Permeate Concentration of Heavy Metal Ion in Adsorptive Membrane Filtration Using a Metal-Organic Framework Incorporated Nanofibrous Membrane. Chem. Eng. J. 2018, 352, 737-744. https://doi.org/10.1016/j.cej.2018.07.077
- Yurekli, Y.; Yildirim, M.; Aydin, L.; Savran, M. Filtration and Removal Performances of Membrane Adsorbers. J. Hazard. Mater. 2017, 332, 33-41. https://doi.org/10.1016/j.jhazmat.2017.02.061
- Pan, S.; Shen, J.; Deng, Z.; Zhang, X.; Pan, B. Metastable Nano-Zirconium Phosphate Inside Gel-Type Ion Exchanger for Enhanced Removal of Heavy Metals. J. Hazard. Mater. 2022, 423, 127158. https://doi.org/10.1016/j.jhazmat.2021.127158
- Jia, K.; Yi, Y.; Ma, W.; Cao, Y.; Li, G.; Liu, S.; Wang, T.; An, N. Ion Flotation of Heavy Metal Ions by Using Biodegradable Biosurfactant as Collector: Application and Removal Mechanism. Miner. Eng. 2022, 176, 107338. https://doi.org/10.1016/j.mineng.2021.107338
- Liao, Z.-L.; Zhao, Z.-C.; Zhu, J.-C.; Chen, H.; Meng, D.-Z. Complexing Characteristics between Cu(Ⅱ) Ions and Dissolved Organic Matter in Combined Sewer Overflows: Implications for the Removal of Heavy Metals by Enhanced Coagulation. Chemosphere 2021, 265, 129023. https://doi.org/10.1016/j.chemosphere.2020.129023
- Tao, H.-C.; Lei, T.; Shi, G.; Sun, X.-N.; Wei, X.-Y.; Zhang, L.-J.; Wu, W.-M. Removal of Heavy Metals from Fly Ash Leachate Using Combined Bioelectrochemical Systems and Electrolysis. J. Hazard. Mater. 2014, 264, 1-7. https://doi.org/10.1016/j.jhazmat.2013.10.057
- Ghasemi, A.; Ghasemi, Z. Modifying the Surface of TEOS Xerogel by Metal Ion Zn(II). Russ J Appl Chem 2017, 90, 826–829. https://doi.org/10.1134/S1070427217050251
- Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12, 337-340. https://doi.org/10.23939/chcht12.03.337
- Rydchuk, P.; Tymoshuk, O.S.; Oleksiv, L.V.; Chaban, T.I.; Matiychuk, V.S. Voltammetric Determination of Pt(IV) using 5-Hydroxyimino-4-imino-1,3-thiazolidine-2-one. Methods Objects Chem. Anal. 2019, 14, 130-139. https://doi.org/10.17721/moca.2019.130-139
- Shah, J.; Jan, M.J.; Jamil, S.; Haq, A. Magnetic Particles Precipitated onto Wheat Husk for Removal of Methyl Blue from Aqueous Solution. Toxicol Environ Chem 2014, 96, 218-226. https://doi.org/10.1080/02772248.2014.929690
- Hassani, S.; Ghasemi, A.; Fazli, M.; Haghbeen, K.; Legge, R.L. Cation‐Assisted Adsorption of Chlorophenols by Nano‐Xerogels. CJCE 2015, 93, 2214-2221. https://doi.org/10.1002/cjce.22341
- Benkartoussa, M.; Lehocine, M.B.; Arris, S.; Meniai, H.A. Adsorption Removal of Eriochrome Black T (EBT) and Rose Bengal (RB) from Aqueous Solutions Using Bio-Sorbents Combination. Chem. Chem. Technol. 2021, 15, 299-311. https://doi.org/10.23939/chcht15.02.299
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M. Application of Potato (Solanum tuberosum) Plant Wastes for the Removal of Methylene Blue and Malachite Green Dye from Aqueous Solution. Arab. J. Chem. 2016, 9, S707-S716. https://doi.org/10.1016/j.arabjc.2011.07.021
- Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5, 1722-1731. https://doi.org/10.1021/am302883m
- Ghasemi, A.; Sohrabi, M.R.; Motiee, F. Preparation and Characterization of a New Sawdust/MNP/PEI Nanocomposite and its Applications for Removing Pb (II) Ions from Aqueous Solution. Water Sci. Technol. 2018, 78, 2469-2480. http://dx.doi.org/10.2166/wst.2018.521
- Zhu, H.; Wu, J.; Fang, M.; Tan, L.; Chen, C.; Alharbi, N.S.; Hayate, T.; Tan, X. Synthesis of a Core–Shell Magnetic Fe3O4–NH2@PmPD Nanocomposite for Efficient Removal of Cr(vi) from Aqueous Media. RSC Adv. 2017, 7, 36231-36241. https://doi.org/10.1039/C7RA05314B
- Mamera, M.; van Tol, J.J.; Aghoghovwia, M.P.; Kotze, E. Sensitivity and Calibration of the FT-IR Spectroscopy on Concentration of Heavy Metal Ions in River and Borehole Water Sources. Appl. Sci. 2020, 10, 7785. https://doi.org/10.3390/app10217785
- Foner, S. Versatile and Sensitive Vibrating‐Sample Magnetometer. Rev. Sci. Instrum. 1959, 30, 548-557
- Huang, C.-F.; Huang, A.-C.; Hsieh, Y.-F.; Chu, F.-J.; Wan, T.-J. The effects of Magnetic Nanoparticles Embedded with SA/PVA and pH on Chemical-Mechanical Polishing Wastewater and Magnetic Particle Regeneration and Recycle. Water Resour. Ind. 2017, 18, 9-16. https://doi.org/10.1016/j.wri.2017.06.001
- Zhang, Y.; Xu, S.; Luo, Y.; Pan, S.; Dinga, H.; Li, G. Synthesis of Mesoporous Carbon Capsules Encapsulated with Magnetite Nanoparticles and their Application in Wastewater Treatment. J. Mater. Chem. 2011, 21, 3664-3671. https://doi.org/10.1039/C0JM03727C
- Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Fe3O4@ SiO2@ CS-TETA Functionalized Graphene Oxide for the Adsorption of Methylene Blue (MB) and Cu (II). Appl. Surf. Sci. 2017, 420, 970-981. https://doi.org/10.1016/j.apsusc.2017.05.179
- Ali, I.; Peng, C.; Lin, D.; Saroj, D.P.; Naz, I.; Khan, Z.M.; Sultan, M.; Ali, M. Encapsulated Green Magnetic Nanoparticles for the Removal of Toxic Pb2+ and Cd2+ from Water: Development, Characterization and Application. J. Environ. Manage. 2019, 234, 273-289. https://doi.org/10.1016/j.jenvman.2018.12.112
- Macalalad, A.; Rose Ebete, Q.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1-8. http://dx.doi.org/10.23939/chcht15.01.001
- Farghali, A.A.; Bahgat, M.; Allah, A.E.; Khedr, M.H. Adsorption of Pb(II) Ions from Aqueous Solutions Using Copper Oxide Nanostructures. Beni-Suef University Journal of Basic and Applied Sciences 2013, 2, 61-71. https://doi.org/10.1016/j.bjbas.2013.01.001
- Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe; 1898.
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501-1507. http://dx.doi.org/10.1016/0043-1354(84)90124-6
- Gosset, T.; Trancart, J.-L.; Thévenot, D.R. Batch Metal Removal by Peat. Kinetics and Thermodynamics. Water Res. 1986, 20, 21-26. https://doi.org/10.1016/0043-1354(86)90209-5
- Ho, Y.-S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1-8. https://doi.org/10.1016/j.cej.2009.04.042
- Weber Jr, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. Journal of the sanitary engineering division 1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430