This study examines the solubility of humic acids as a function of solution pH and their interactions with di- and trivalent metal ions at different pH values. It has been observed that humic acids and their salts interact with divalent transition metal ions in aqueous solutions at low pH values. The results demonstrate that the amount of metal ions – specifically copper, cobalt, and nickel – bound to humic acids increases almost linearly with their initial concentration. Moreover, the amount of bound metal ions rises as the pH of the medium increases. Investigations into the interactions of iron, aluminum, and chromium ions with humic acids at varying pH levels show that, at low pH values and low metal ion concentrations, the amount of metal ions bound to humic acids is directly proportional to their concentration in the aqueous solution.
[1] Peña-Méndez, E. M.; Havel, J.; Patočka, J. Humic Substances – Compounds of Still Unknown Structure: Applications in Agriculture, Industry, Environment, and Biomedicine. J. Appl. Biomed. 2005, 3, 13–24. https://doi.org/10.32725/jab.2005.002
[2] Baglieri, A.; Ioppolo, A.; Nègre, M.; Gennari, M. AMethod for Isolating Soil Organic Matter after the Extraction of Humic and Fulvic Acids. Org. Geochem. 2007, 38, 140–150. https://doi.org/10.1016/j.orggeochem.2006.07.007
[3] Tiwari, J.; Al Ramanathan; Bauddh, K.; Korstad, J. Humic Substance: Structure, Function and Benefits for Agroecosystems – A Review. Pedosphere 2023, 33, 237–249. https://doi.org/10.1016/j.pedsph.2022.07.008
[4] Prandini, M. N.; Rahmayanti, M. Effect pH Adsorption of Naphtol Dye Using Humic Acid Adsorbent Result of Peat Isolation from Kalimantan. Proc. Int. Conf. Sci. Eng. 2020, 3, 147–151. https://doi.org/10.14421/icse.v3.486
[5] Jarukas, L.; Ivanauskas, L.; Kasparaviciene, G.; Baranauskaite, J.; Marksa, M.; Bernatoniene, J. Determination of Organic Compounds, Fulvic Acid, Humic Acid, and Humin in Peat and Sapropel Alkaline Extracts. Molecules 2021, 26, 2995. https://doi.org/10.3390/molecules26102995
[6] Bibak, A. Cobalt, Copper, and Manganese Adsorption by Aluminium and Iron Oxides and Humic Acid. Commun. Soil Sci. Plant Anal. 1994, 25, 3229–3239.https://doi.org/10.1080/00103629409369261
[7] Shaw, P. J. The Effect of pH, Dissolved Humic Substances, and Ionic Composition on the Transfer of Iron and Phosphate to Par- ticulate Size Fractions in Epilimnetic Lake Water. Limnol. Oceanogr. 1994, 39, 1734–1743. https://doi.org/10.4319/lo.1994.39.7.1734
[8] Ashworth, D. J.; Alloway, B. J. Influence of Dissolved Organic Matter on the Solubility of Heavy Metals in Sewage-Sludge-Amended Soils. Commun. Soil Sci. Plant Anal. 2008, 39, 538–550. https://doi.org/10.1080/00103620701826787
[9] Rodríguez-Vila, A.; Asensio, V.; Forján, R.; Covelo, E. F. Remediation of a Copper Mine Soil with Organic Amendments: Compost and Biochar versus Technosol and Biochar. Span. J. Soil Sci. 2015, 5, 130–143. https://doi.org/10.3232/SJSS.2015.V5.N2.03
[10] Soler-Rovira, P.; Madejón, E.; Madejón, P.; Plaza, C. In Situ Remediation of Metal-Contaminated Soils with Organic Amendments: Role of Humic Acids in Copper Bioavailability.Chemosphere 2010, 79, 844–849. https://doi.org/10.1016/j.chemosphere.2010.02.054
[11] Hbaieb, R.; Soubrand, M.; Joussein, E.; Medhioub, M.; Casellas, M.; Gady, C.; Saladin, G. Assisted Phytostabilisation of As, Pb and Sb-Contaminated Technosols with Mineral and Organic Amendments Using Douglas Fir (Pseudotsuga menziesii (Mirb.) Franco). Environ. Sci. Pollut. Res. 2018, 25, 32292–32302. https://doi.org/10.1007/s11356-018-3213-6
[12] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[13] Miroshnichenko, D.; Lebedev, V.; Shved, M.; Fedevych, O.; Pyshyev, S. Valorization of Lignite Use in “Green” Technologies: A Review. Chem. Chem. Technol. 2025, 19, 157–173. https://doi.org/10.23939/chcht19.01.157
[14] Melnykov, A.; Miroshnichenko, D.; Karnozhytskyi, P. P.; Karnozhytskyi, P. V. Sorption Properties of Brown Coal Processing Products. Chem. Chem. Technol. 2024, 18, 493–501. https://doi.org/10.23939/chcht18.04.493
[15] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) With Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740–747. https://doi.org/10.23939/chcht17.04.740
[16] Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental Fate and Impacts of Microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
[17] Rahman, A. M.; Hasan, M. A.; Rahim, A.; Alam, A. M. S. Characterization of Humic Acid from the River Bottom Sediments of Burigonga: Complexation Studies of Metals with Humic Acid. Pak. J. Anal. Environ. Chem. 2010, 11, 42–52. https://www.researchgate.net/publication/259873702
[18] Mendez, M. O.; Maier, R. M. Phytoremediation of Mine Tailings in Temperate and Arid Environments. Rev. Environ.Sci. Biotechnol. 2008, 7, 47–59. https://doi.org/10.1007/s11157-007-9125-4
[19] Hattab, N.; Soubrand, M.; Guégan, R.; Motelica-Heino, M.; Bourrat, X.; Faure, O.; Bouchardon, J. L. Effect of Organic Amendments on the Mobility of Trace Elements in Phytoremediated Techno-Soils: Role of the Humic Substances. Environ. Sci. Pollut. Res. 2014, 21, 10470–10480. https://doi.org/10.1007/s11356-014-2959-8
[20] Tan, K. H. Humic Matter in Soil and the Environment; CRC Press, 2003. https://doi.org/10.1201/9780203912546
[21] Tipping, E. The Adsorption of Aquatic Humic Substances by Iron Oxides. Geochim. Cosmochim Acta 1981, 45, 191–199. https://doi.org/10.1016/0016-7037(81)90162-9
[22] Benedetti, M. F.; Milne, C. J.; Kinniburgh, D. G.; Van Riemsdijk, W. H.; Koopal, L. K. Metal Ion Binding to Humic Substances: Application of the Non-Ideal Competitive Adsorption Model. Environ. Sci. Technol. 1995, 29, 446–457. https://doi.org/10.1021/es00002a022