Study of the Influence of Ultrasonic Waves on the Sorption Capacity of Enriched Bentonite of the Cherkasy Deposit in Relation to Copper Ions

2025;
: pp. 425 - 433
1
Lviv Polytechnic National University
2
Іnstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The research subject was bentonite clay of layer II from the Dashukivka area of the Cherkasy deposit. The clay was enriched with montmorillonite using sedimentation, followed by the production of particles with a fraction size of $\leq 0.001 мм$. Both natural montmorillonite and the nature of isomorphic substitutions in its structure were confirmed through X-ray diffraction and comprehensive thermal analyses. The activation of montmorillonite-rich bentonite clay was achieved through ultrasonic waves. The sorption capacity of natural bentonite and ultrasonically modified enriched bentonite against Cu2+ ions was assessed by modeling the sorption isotherm data, using the Langmuir equation. The Cu2+ ions sorption mechanism was studied using energy-dispersive and diffractometric X-ray analyses. The research provided an analysis of applications of natural bentonite and ultrasonically modified enriched bentonite clay.

  1. [1] Dudnyk, S.V. Vodna toksykolohiia: osnovni teoretychni polozhennia ta yikhnie praktychne zastosuvannia; Vydavnytstvo Ukrainskoho fito-sotsiolohichnoho tsentru, 2013.
  2. [2] Varank, G.; Dem, A.; Top, S.; Sekman, E.; Akkay, E. Yetilmezsoy K., Bilgili M. S. Migration Behavior of Andfill Leachate Contaminants through Alternative Composite Liners. Sci Total Environ. 2011, 409, 3183–3196. https://doi.org/10.1016/j.scitotenv.2011.04.044
  3. [3] Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metals Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. https://doi.org/10.1007/978-3-7643- 8340-4_6
  4. [4] Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. [Online] 2021, 12, 643972. https://doi.org/10.3389/fphar.2021.643972 (accessed April 13, 2021).
  5. [5] Petrova, M.A.; Postnikova, M.O.; Stepova, K.V. Adsorbtsiino- barierni vlastyvosti bentonitu Yazivskoho rodovyshcha yak materialu protyfiltratsiinykh ekraniv. East.–Eur. J. Enterp. Technol. 2014, 5/10, (71), 36–41. https://doi.org/10.15587/1729-4061.2014.28004
  6. [6] Nahurskyi, N.; Malovanyy, M.; Bordun, I.; Szymczykiewicz, E. Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review. Chem. Chem. Technol. 2024, 18, 170–187. https://doi.org/10.23939/chcht18.02.170
  7. [7] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
  8. [8] Ptashnyk, V.; Bordun, I.; Malovanyy, M.; Chabecki, P.; Pieshkov, T. The Change of Structural Parameters of Nanoporous Activated Carbons under the Influence of Ultrasonic Radiation. Appl. Nanosci. 2020, 10, 4891–4899. https://doi.org/10.1007/s13204-020-01393-z
  9. [9] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
  10. [10] Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A. Unlocking Sustainability: A Comprehensive Review of up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211–231. https://doi.org/10.23939/chcht18.02.211
  11. [11] Sakalova, H.V.; Trach, І.А.; Petruk, H.D.; Vasylinych, T.M. Research on the Efficiency of Waste Water Purification from Chromium(IIІ) Ions by Bentonite Clays. Visnyk Vinnytskoho politekhnichnoho instytutu. 2020, 3, 7–12. https://doi.org/10.31649/1997-9266-2020-150-3-7-12
  12. [12] Malovanyy, M.; Sakalova, H.; Vasylinycz, T.; Palamarchuk, O.; Semchuk, Ja. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167–176. https://doi.org/10.12911/22998993/102841
  13. [13] Lagaly, G.; Ogawa, M.; Dekany, I. Clay Mineral Organic Interactions. In Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds.; 2006; pp 309–378. https://doi.org/10.1016/S1572-4352(05)01010-X
  14. [14] Kochubei, V.; Yaremchuk, Y.; Malovanyy, M.; Yaholnyk, S.; Lutek, W. Studies of Adsorption Capacity of Montmorillonite- Enriched Clay from the Khmelnytskyi Region. Key Eng. Mater. 2022, 925, 143–149. https://doi.org/10.4028/p-i713sy
  15. [15] Kochubei, V.; Yaremchuk, Y.; Malovanyy, M.; Yaholnyk, S.; Slyuzar, A. Perspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites. Chem. Chem. Technol. 2023, 17, 870–877. https://doi.org/10.23939/chcht17.04.870
  16. [16] Sysa, L.V.; Stepova, K.V.; Petrova, M.A.; Kontsur, A.Z. Microwave-treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126–134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134
  17. [17] Shabalin, B.G.; Yaroshenko, K.K.; Marinich, O.V.; Koliabina, I.L.; Mitsiuk, N.V.; Buhera, S.P. Regarding the Use of Bentonite Clays from the Cherkasy Deposit for Safe Radioactive Waste Disposal in Near-Surface Low Level Waste Storage Facilties: Researches on Sorption Properties of Bentonites. Geochemistry of Technogenesis 2021, 6, 33–44. https://doi.org/10.15407/10.15407/geotech2021.34.033
  18. [18] Dibrivnyi, V.M.; Serheiev, V.V.; Van-Chyn-Sian, Yu.Ia. Kurs koloidnoi khimii; Intelekt-Zakhid, 2008.
  19. [19] Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press, 1997.
  20. [20] Cheary, R.W.; Coelho A. Fundamental Parameters Approach to x-Ray Line-Profile Fitting. J. Appl. Cryst. 1992, 25, 109–121. https://doi.org/10.1107/S0021889891010804
  21. [21] Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and Mineralogy of Clay Minerals. In Handbook of Clay Science, Vol. 1; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds.; Elsevier Ltd, 2006; pp. 19–86. https://doi.org/10.1016/S1572-4352(05)01002-0
  22. [22] Matkovskyi, O.; Kvasnytsia, V.; Naumko, I.; Bilonizhka, P; Hrechanovska, O.; Kvasnytsia, I.; Melnykov, V.; Popp, I.; Skakun, L.; Slyvko, Ye.; et al. Mineraly Ukrainskykh Karpat. Sylikaty; LNU imeni Ivana Franka, 2011.
  23. [23] Rouquerol, F.; Rouquerol, J.; Llewellyn P. Thermal Analysis. In Handbook of Clay Science; Bergaya, F.; Lagaly, G., Eds.; 2013; pp 361-379. https://doi.org/10.1016/B978-0-08-098259-5.00014-7
  24. [24] Bish, D.L.; Mumpton, F.A. Thermal analysis in clay science. Clay Minerals Society Workshop lectures, 1990.
  25. [25] Rakytskaya, T.L.; Kiose, T.A.; Djiga, А.M.; Toporov, S.V. IR Spectral Study of Structures and Phase Compositions of Ukrainian Bentonites. Visnyk Odeskoho natsionalnoho universytetu 2012, 17, 13–19. https://doi.org/10.18524/2304-0947.2012.1(41).32033
  26. [26] Bhattacharyya, K.G.; Gupta, S.S. Adsorptive Accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from Water on Montmorillonite: Influence of Acid Activation. J. Colloid Interface Sci. 2007, 310, 411–424. https://doi.org/10.1016/j.jcis.2007.01.080 Study of the Influence of Ultrasonic Waves on the Sorption Capacity of Enriched Bentonite…        433
  27. [27] Ping, L.; Liu, Z.; Ma, F.; Shi, Q.; Guo, Z.; Wu, W. Effects of pH, Ionic Strength and Humic Acid on the Sorption of Neptunium(V) to Na-Bentonite. J. Mol. Liq. 2015, 206, 285–292. https://doi.org/10.1016/j.molliq.2015.02.014
  28. [28] Bergaya, F.; Theng, B. K. G.; Lagaly, G. Handbook of Clay Science; Elsevier Ltd, 2006.
  29. [29] Sharkina, E.V. Stroenie i svoistva organomineralnikh soedinenii; Naukova Dumka: Kyiv, 1976.
  30. [30] Essington, M. E. Soil and Water Chemistry; CRC Press, 2004.
  31. [31] Okumura, M.; Kerisit, S.; Bourg, I. C.; Lammers, L. N.; Ikeda, T.; Sassi, M.; Rosso, K. M.; Machida, M. Radiocesium Interaction with clay minerals: Theory and simulation Advances Post-Fukushima. J. Environ. Radioact. 2018, 189, 135–145. https://doi.org/10.1016/j.jenvrad.2018.09.007
  32. [32] Alvarez-Ayuso, E; Garcia-Sanchez, A. Removal of Heavy Metals from Waste Waters by Natural and Na-Exchanged Bentonites. Clays Clay Miner. 2003, 51, 475–480. https://doi.org/10.1346/CCMN.2003.0510501
  33. [33] Tarasevych, Y. Pryrodnye Sorbenty v Protsessakh Ochistky Vody; Naukova Dumka: Kyiv, 1981.
  34. [34] Rakyts’ka, T.L.; Dzhyga, G.M.; Kiose T.O. Adsorbtsiini ta fizyko-khimichni vlastyvosti pryrodnykh ta modyfikovanykh form montmorylonitu. Visnyk Odeskoho natsionalnoho universytetu 2017, 22, 38–54. https://doi.org/10.18524/2304-0947.2017.1(61).94710
  35. [35] Shabalin, B. H.; Lavrynenko, O. M.; Kosorukov, P. O.; Buhera, S. P. The Perspectives of the Natural Smectite Clay Application for the Creation of a Geological Repository of Radioactive Waste in Ukraine. Mineralogical Journal 2018, 40, 65–78. https://doi.org/10.15407/mineraljournal.40.04.065