High-Fidelity RANS CFD Simulations of Physicochemical Process of Combustion in Gas Turbine Combustion Chambers in ANSYS CFX

2024;
: pp. 81 – 95
https://doi.org/10.23939/jeecs2024.02.081
Received: October 02, 2024
Revised: October 30, 2024
Accepted: November 06, 2024

M. Hajivand. High-fidelity RANS CFD simulations of physico-chemical process of combustion in gas turbine combustion chambers in ANSYS CFX. Energy Engineering and Control Systems, 2024, Vol. 10, No. 2, pp. 81 – 95. https://doi.org/10.23939/jeecs2024.02.081

Authors:
1
National Aerospace University «Kharkiv Aviation Institute»

This study examines the validation and precision of essential parameters, including temperature distribution and nitrogen oxide (NOx) emissions, at the outlet of a gas turbine combustion chamber through high-fidelity Reynolds-Averaged Navier-Stokes (RANS) CFD simulations. The propane(C3H8)-air combustion process is modeled in ANSYS CFX utilizing three various turbulence models, including standard k-ε, RNG k-ε, and shear stress transport (SST), beside various combustion models such as the Eddy Dissipation Model (EDM), a hybrid of Eddy Dissipation and Finite Rate Chemistry (EDM/FRC), and the Flamelet model, including the P-1 model of radiation. A thorough sensitivity analysis was performed utilizing fine, medium, and coarse unstructured computational meshes to improve the reliability and accuracy of the results. The obtained CFD results showed that for outlet temperature, the standard k-ε turbulence model coupled with the Flamelet combustion model yields a mean deviation of -6.8%, while k-ε coupled with EDM yields a mean deviation of -9.9%. It also gave the lowest deviation of NOx emissions at combustor outlet equal to 2.3% when EDM/FRC combustion model was used in tandem with SST turbulence model. While the same combustion model coupled with the standard k-ε and RNG k-ε turbulence models exhibited a higher mean deviation of 13.6% and 15.4%, respectively, in predicting NOx emissions.

  1. Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences/Progress in Aerospace Sciences, 38(3), 209–272. https://doi.org/10.1016/S0376-0421(02)00005-2
  2. Schlesinger, S. (1979) Terminology for Model Credibility. Simulation, 32, 103-104. https://doi.org/10.1177/003754977903200304
  3. Zhukov, V. P. (2012). Verification, Validation, and Testing of Kinetic Mechanisms of Hydrogen Combustion in Fluid-Dynamic Computations. ISRN Mechanical Engineering, 2012, 1–11. https://doi.org/10.5402/2012/475607
  4. Bhurat, S., Pandey, S., Chintala, V., Jaiswal, M., & Kurien, C. (2022). Effect of novel fuel vaporiser technology on engine characteristics of partially premixed charge compression ignition (PCCI) engine with toroidal combustion chamber. Fuel, 315, 123197. https://doi.org/10.1016/j.fuel.2022.123197
  5. Becker, L. G., Kosaka, H., Böhm, B., Doost, S., Knappstein, R., Habermehl, M., Kneer, R., Janicka, J., & Dreizler, A. (2017b). Experimental investigation of flame stabilization inside the quarl of an oxyfuel swirl burner. Fuel, 201, 124–135. https://doi.org/10.1016/j.fuel.2016.09.002
  6. Aerospace Mechanical and Mechatronic Engineering - The University of Sydney. (n.d.). https://web.aeromech.usyd.edu.au/thermofluids/swirl.php
  7. Ferziger, J. H., & Perić, M. (2002). Introduction to Numerical Methods. In Springer eBooks (pp. 21–37). https://doi.org/10.1007/978-3-642-56026-2_2
  8. Eckbreth, A. C. (2022). Laser Diagnostics for Combustion Temperature and Species. https://doi.org/10.1201/9781003077251
  9. KoHse-HoingHaus, N. (2002). Applied Combustion Diagnostics. In CRC Press eBooks. https://doi.org/10.1201/9781498719414
  10. Masri, A. R. (2011). Design of Experiments for Gaining Insights and Validating Modeling of Turbulent Combustion. In Fluid mechanics and its applications (pp. 355–380). https://doi.org/10.1007/978-94-007-0412-1_15
  11. Borghi, R. (1988). Turbulent combustion modelling. Progress in Energy and Combustion Science, 14(4), 245–292. https://doi.org/10.1016/0360-1285(88)90015-9
  12. ANSYS, Inc. (2015) ANSYS CFX-Solver Theory Guide, Release 16.2 https://www.ansys.com/
  13. Serbin, S., Burunsuz, K., Chen, D., & Kowalski, J. (2022). Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Maritime Research, 29(2), 64–76. https://doi.org/10.2478/pomr-2022-0018
  14. Launder, B. E., & Spalding, D. B. (1972). Lectures in mathematical models of turbulence. http://ci.nii.ac.jp/ncid/BA04677540
  15. Matveev, I. B., Serbin, S. I., Vilkul, V. V., & Goncharova, N. A. (2015). Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Transactions on Plasma Science, 43(12), 3974–3978. https://doi.org/10.1109/TPS.2015.2475125
  16. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  17. Li, Q., Yang, H., Wang, Y., & Wang, P. (2015). Accuracy improvement of the modified EDM model for non-premixed turbulent combustion in gas turbine. Case Studies in Thermal Engineering, 6, 69–76. https://doi.org/10.1016/j.csite.2015.07.002
  18. Magnussen, B. F., & Hjertager, B. H. (1977b). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion, 16(1), 719–729. https://doi.org/10.1016/S0082-0784(77)80366-4
  19. Gabler, H., Yetter, R., & Glassman, I. (1998). Asymmetric whirl combustion - A new approach for non-premixed low NO(x) gas turbine combustor design. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. https://doi.org/10.2514/6.1998-3530
  20. Mongia, H. (2008). Recent Progress in Comprehensive Modeling of Gas Turbine Combustion. 46th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2008-1445
  21. Gobbato, P., Masi, M., Toffolo, A., & Lazzaretto, A. (2011). Numerical simulation of a hydrogen fuelled gas turbine combustor. International Journal of Hydrogen Energy, 36(13), 7993–8002. https://doi.org/10.1016/j.ijhydene.2011.01.045
  22. Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319–339. https://doi.org/10.1016/0360-1285(84)90114-x
  23. Chitgarha, F., & Mardani, A. (2018). Assessment of steady and unsteady flamelet models for MILD combustion modeling. International Journal of Hydrogen Energy, 43(32), 15551–15563. https://doi.org/10.1016/j.ijhydene.2018.06.071
  24. Gamil, A. A., Nikolaidis, T., Lelaj, I., & Laskaridis, P. (2020). Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 22, 100772. https://doi.org/10.1016/j.csite.2020.100772
  25. Jiang, B., Liang, H., Huang, G., & Li, X. (2006). Study on NOx Formation in CH4/Air Jet Combustion. Chinese Journal of Chemical Engineering, 14(6), 723–728. https://doi.org/10.1016/S1004-9541(07)60002-0
  26. Gamil, A. A., Nikolaidis, T., Lelaj, I., & Laskaridis, P. (2020). Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 22, 100772. https://doi.org/10.1016/j.csite.2020.100772
  27. Jones, W. P., & Toral, H. (1983). Temperature and Composition Measurements in a Research Gas Turbine Combustion Chamber. Combustion Science and Technology, 31(5–6), 249–275. https://doi.org/10.1080/00102208308923645
  28. Bicen, A. F., & Jones, W. P. (1986). Velocity Characteristics of Isothermal and Combusting Flows in a Model Combustor. Combustion Science and Technology, 49(1–2), 1–15. https://doi.org/10.1080/00102208608923900
  29. Heitor, M., & Whitelaw, J. (1986). Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor. Combustion and Flame, 64(1), 1–32. https://doi.org/10.1016/0010-2180(86)90095-7
  30. Mohammadpour, M., Houshfar, E., & Ashjaee, M. (2023). Combustion behavior study and flame zone analysis of biogas-fueled gas turbine combustor under O2/CO2 and O2/H2O oxidizing modes. Fuel, 345, 128173. https://doi.org/10.1016/j.fuel.2023.128173
  31. Wang, J., Hu, Z., Du, C., Tian, L., & Baleta, J. (2021). Numerical study of effusion cooling of a gas turbine combustor liner. Fuel, 294, 120578. https://doi.org/10.1016/j.fuel.2021.120578