Area-wide 2D and quasi-3D geoelectric models of the Earth's crust and upper mantle as a possible evidence of recent tectonic activity in the western part of the Ukrainian Shield

1
Institute of Geophysics, Acad. Sci. Czech Republic
2
Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine
3
Subbotin Institute of geophysics of National Academy of Sciences of Ukraine

The purpose of the presented work was to model the electrical conductivity distribution in the northwestern part of the Ukrainian shield and to study the relationship of geoelectric anomalies with natural mineral deposits and with signs of possible tectonic activation of long-lived fault systems on the Shield. The methodology was based on long-period magnetotelluric and magnetovariational measurements in the period range of 3-16 to 2500-3600 s. The dense network of measurement sites made it possible to explore the geoelectric structure of the Ukrainian Shield segment limited by the coordinates 26°-30°E and 48°-51,7°N. 2D and quasi-3D inversion of the obtained magnetotelluric and geomagnetic responses resulted in the creation of overview models of electrical resistivity/conductivity for the territory of investigation. As a result, geoelectrically anomalous structures were identified at different depths. The local character of the conductors and their position indicate their connection with recently activated fault zones, their junctions and with metallogeny. The Precambrian age of crystalline rocks of the investigated area refers mainly to the electronic-type graphite-sulphite origin of increased conductivity, however the depth of conductive features, their vertical extent and their link to rejuvenated fault systems may indicate the genetic connection of various minerals and their subsequent precipitation with deep fluid migration. Originality. The obtained results aimed at clarifying the deep structure and correlating the geoelectric features of the earth’s crust and upper mantle with fault systems and deposits of various natural mineral sources. In addition, they alone can serve as further evidence of possible tectonic activation processes in the studied area. Practical significance. The presented results can bring social benefits by identifying areas of mineral endowment, and in the field of geodynamics they can contribute to the assessment of natural hazard in mapping the course of tectonically active fault systems.

  1. Antsiferov, A. V., Sheremet, E. M., Nikolaev, Yu. I., Nikolaev, I. Yu., Setaya, L. D., Antsiferov, V. A., & Omelchenko, A. A. (2011). Deep Electromagnetic (MT and AMT) Sounding of the Suture Zones of the Ukrainian Shield. Izvestiya, Physics of the Solid Earth, 47, 1, 33-44, https://doi.org/10.1134/ S106935 1311010010.
  2. Astapenko, V. N. (2012). The Earth's crust and mantle on the territory of Belarus. Magnetotelluric data. Minsk. 208 p. (in Russian).
  3. Astapenko, V. N., Logvinov, I. M. (2014). Geoelectric model of the crust and upper mantle along geotraverse EUROBRI-DGE-97. Geofiz. Zhurn., 36, 5, 143-155 (in Russian). http://www.igph.kiev.ua/FullVersion/2014/gj5/art5814.pdf
  4. Banks, R. J. (1979). The use of the equivalent current systems in the interpretation of the Geomagnetic Deep Sounding data. Geophys. J. R. Astr. Soc., 87, 139-157. https://doi.org/10.1111/j.1365-246X.1979.tb04773.x
  5. Baysarovich, M. M., Mitropol'sky, O. Yu., ? Chuprina, І. С. (Eds.). (2002). Atlas. Deep lithospheric structure and eco-geology of Ukraine. Кiev: IGN NASU. 55 p. (in Ukrainian). https://doi.org 10.1016/j.gsf.2018. 10.011.
  6. Bogdanova, S. R., Gorbatschev, R., Grad, M., Janik, T.A., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L. (2006). EURO­BRIDGE and POLONAISE Working Groups, 2006. EUROBRIDGE: new insight into the geo-dynamic evolution of the East European Craton. In: Gee, D.G., Stephenson, R.A. (eds). (2006). European Lithosphere Dynamics. Geological Society, London, Memoirs, 32, 599-625, https://doi.org/:10.1144/GSL.MEM.2006.032.01. 36.
  7. Bogdanova, S. V., Bingen, B., Gorbatschev, R., Kheraskova, T. N., Kozlov, V. I., Puchkov, V. N., Volozh, Yu. A. (2008). The East European Craton (Baltica) before and during the assembly of Rodinia. Precam. Res., 160, 1, 23-45, doi:10. 1016/j.precamres.2007.04.024.
  8. Bouzid, A., Bayou, B., Liégeois, J-P., Bourouis,S., Bougchiche, S.S., Bendekken, A., Abtout, A., Boukhlouf, W., Ouabadi, A. (2015), Lithospheric structure of the Atakor metacratonic volcanic swell (Hoggar, Tuareg Shield, southern Algeria): Electrical constraints from magnetotelluric data. Geological Society of America Special Papers, 71-514, 239–255, https://doi.org/:10.1130/2015. 2514(15).
  9. Burakhovich, T. K., Kulik, S. N., Logvinov, I. M., Gordienko, I. V., & Tarasov, V. N. (1997). Conductivity crust of the NW Ukrainian Shield. Reports of NAS of Ukraine, 10, 125-128 (in Russian).
  10. Cao, S., Neubauer, F. (2019). Graphitic material in fault zones: Implications for fault strength and carbon cycle. Earth Sci. Rev., 194, 109-124, https://doi.org/10.1016/j.earscirev.2019.05.008.
  11. Chattopadhyay, A., Bhattacharjee, D., Srivastava, S. (2020). Neotectonic fault movement and interpolate seismicity in the central Indian shield: a review and reappraisal. Journal of Mineralogi­cal and Petrological Sciences, J-STAGE Advance Publication, 115, 2, 136-149, https://doi.org/10. 2465/jmps.190824b.
  12. Claesson, S., Bibikova, E., Shumlyanskyy, L., Dhui­me, B., Hawkesworth, C.J. (2014). The oldest crust in the Ukrainian Shield – Eoarchaean U-Pb ages and Hf-Nd constraints from enderbites and metasediments. Geological Society, London, Special Publications. 389, 227-259, https://doi. org/10.1144/ SP389.9.
  13. Foley, S. F. (2008). Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci., 1, 503-510, https://doi.org/10.1038/ngeo261.
  14. Garetsky, R. G., & Klushin, S. V. (1989). Listric faults in the Pripyat Trough. Geotectonics, 1, 48-60 (in Russian).
  15. Gintov, O. B., Pashkevich, I. K. (2010). Tectonophy­sical analysis and geodynamic interpretation of the three-dimensional geophysical model of the Ukrainian Shield. Geofiz. Zhurn. 2, 32, 3-27 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v32i2.2010.117553
  16. Glasby, G. P. (2006). Abiogenic Origin of Hydrocar­bons: A Historical Overview. Resource Geology, 56, 1, 83–96, https://doi.org/10.1111/j.1751-3928.2006.tb00271.x
  17. Gordienko, V. V., Gordienko, I. V., Zavgorod­nyaya, O. V., & Usenko, O. V. (2002). Deep heat flow map of Ukraine. 1:2500000.
  18. Gordienko, V. V., Gordienko, I. V., Zavgorod­nyaya, O. V., Kovacikova, S., Logvinov, I. M., Tarasov, V. N., & Usenko, O. V. (2005). Ukrainian Shield (Geophysics, Deep Processes). Kiev: Korvin Press, 210 p. (in Russian). https://www.geokniga.org/bookfiles/geokniga-ukrainskiy-shchit.pdf
  19. Gordienko, V.V., Gordienko, I.V., Zavgorod­nyaya, O.V., Kovacikova, S., Logvinov, I.M., Pek, J.,Tarasov, V.N., Usenko, O.V. (2006). Dnepr-Donets Basin (Geophysics, Deep Proces­ses). Kiev: Korvin Press, 210 p. (in Russian).
  20. Gordienko, V. V., Gordienko, I. V., Zavgorod­nyaya, O. V., Kovacikova, S., Logvinov, I. M., Tarasov, V. N., & Usenko, O. V. (2012). Volyn-Podolian Plate (Geophysics, Deep Processes). Naukova Dumka, Kiev. 180 p. (in Russian).
  21. Gordienko, V. V., Gordienko, I. V., Gordienko, L. Ya., Zavgorodnyaya, O. V., Logvinov, I. M., & Tarasov, V. N. (2020). Zones of recent activation of Ukraine. Geofiz. Zhurn., 2, 42, 29-52. https: //doi.org/10.24028/gzh.0203-3100.v42i2.2020.201740.
  22. Guion, E., Mitescu, K. D., Julien, J.P., Ru, S. (1989). Fractals and percolation in a porous medium. Fractals in Physics: Essays in Honour of Benoit B Mandelbrot. Physics ser. D. V. 38. 172-178. https://doi.org/10.1016/0167-2789(89)90187-5
  23. Gursky, D. S., Kalinin, V. I., Gozhik, P. F., Velika­nov, V. Ya., Kolosovskaya, V. A. (Eds.). (2003). Geology and minerals of Ukraine. Kiev: UkrGGRI. 368 p. (in Ukrainian).
  24. Gursky, D. S., Kruglov, S. S. (Eds.). (2007). Tectonic map of Ukraine. 1:1000000. Kiev: UkrDGRI, 2007 (in Ukrainian).
  25. Ilchenko, T. V. (2002). The results of research by the DSS transect EUROBRIDGE’97. Geofiz. Zhurn. 24, 3, 36-50 (In Russian).
  26. Ingerov, A. I., Rokityansky, I. I., & Tregubenko, V. I. (1999). Forty years of MTS studies in Ukraine. Earth Planet Space, 51, 1127-1133.
  27. Jodicke, H., Jording, A., Ferrari, L., Arzate, J., Mezger, K., & Rupke, L., 2006. Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics. J. Geophys. Res. 111, B08102, https://doi.org/1029/ 2005JB003739.
  28. Kaplun, V. B. (2018). Structure of the Zeya block of Toko Stanovik according to results of magneto­telluric soundings. Russian Geology and Geophy­sics, 59, 4, 419-431, https://doi.org/10.1016/j.rgg. 2018.03.013.
  29. Karato, S., & Wang, D. (2013). Electrical conductivity of minerals and rocks. In: Karato, S. (Ed.): Physicsand Chemistry of the Deep Earth. John Wiley & Sons, Ltd, https://doi.org/10.1002/9781 118529 492.ch5.
  30. Kelbert, A., Meqbel, N., Egbert, G., & Tandon, K. (2014). ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66, 40-53, https://doi.org/10. 1016/ j.cageo. 2014.01.010.
  31. Korja, T., Engels, M., Zhamaletdinov, A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Yu., Tokarev, A. D., Asming, V. E., Vanyan, L. L., Vardaniants, I. L., & Bear W. G, 2002. Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space, 54, 535-558. https://doi.org/10.1186/BF03353044
  32. Kováčiková S., Logvinov I., Nazarevych A., Nazare­vych L., Pek J., Tarasov V., Kalenda P. (2016). Seismic activity and deep conductivity structure of the Eastern Carpathians. Stud. Geophys. Geod., 60, 280-296, https://doi.org/10.1007/s11200-014-09 42-y.
  33. Kováčiková, S., Červ, V., Praus, O. (2005). Modelling of the conductance distribution at the eastern margin of the European Hercynides. Studia geoph. et geod., 49, 403-421. https://doi.org/10.1007/s11200-005-0017-1
  34. Kováčiková, S., Logvinov, I., Tarasov, V. (2019). Comparison of the 2D and quasi-3D geoelectric models of the Ukrainian Eastern Carpathians and their link to the tectonic structure. Tectonics, 38, 3818-3834, https://doi.org/10.1029/2018TC0053 11.
  35. Kovacikova, S., Logvinov, I. M., Pek J., & Tarasov V. N. (2016). Modelling of the Earth’s crust of Ukraine by the results of the magnetotelluric studies using new methods of inversions. Geofiz. Zhurn., 38, 6, 83-100, https://doi.org/10.24028/gzh.0203-3100. v38i6.2016.91871.
  36. Logvinov, I. M. (2015). Deep Geoelectrical Structure of the Central and Western Ukraine. Acta Geo­physica, 63, 5, 1216-1230, https://doi.org/10. 1515/acgeo-2015-0049.
  37. Logvinov, I. M., Gordienko, I. V., Tarasov, V. N. (2017). Geoelectric model (according to the 2D inversion of the results of magnetotelluric studies) along geotraverse DOBRE-3. Reports of NAS of Ukraine, 6, 148-165 (in Russian). https://doi.org/10.15407/dopovidi2018.04.067
  38. Logvinov, I. M., & Tarasov, V. N. (2018). Electric resistivity distribution in the Earth’s crust and upper mantle for the southern East European Platform and Crimea from area-wide 2D models. Acta Geophys., 66, 2, 131-139, https://doi.org/10.1007/ s11600-018-0125-2.
  39. Logvinov, I. M., Tarasov, V. N. (2019). Electric resis­tivity distribution in the Earth’s crust and upper mantle for the western East European Platform in Ukraine from area-wide 2D models. Geofiz. Zhurn., 41, 1, 44-75 (in Russian), https://doi.org/ 1024028/ gzh0203-3001.v.41i1.2019.158863.
  40. Logvinov, I. M., Tarasov, V. N., Gordienko, I. V. (2020). Geoelectric parameters of the northwestern Ukrai­nian Shield from 2D inversion. Geofiz. Zhurn., 42, 1, 51-64 (in Russian), https://doi.org/10.24028/ gzh.0203-3100.v42i1.2020.195467.
  41. Lough, A. C., Wiens, D. A., Nyblade, A. (2018). Reactivation of ancient Antarctic rift zones by intraplate seismicity. Nature Geoscience, 11, 515-519, https://doi.org/10.1038/s4156 1-018-0140-6.
  42. Makhnach, A. S., Garetsky, R. G., Matveev, A. V. (Eds.) (2001). Geology of Belarus. Minsk: Institute of Geological Sciences of the National Academy of Sciences of Belarus. 815 pp. (in Russian).
  43. Malleswari, D., Veeraswamy, K., Abdul-Azeez, K.K., Gupta, A. K., Babu, N., Patro, P. K., & Harinaraya­na, T. (2019). Magnetotelluric incvestigation of lithosphe-ric electrical structure beneath the Dharwar Craton in South India: Evidence for mantle suture and plume-continental interaction. Geosci. Front., 10, 1915-1930, https://doi.org/ 10.1016/j.gsf. 2018.10.011.
  44. Map of the hypsometry of the sole of the plate complexes of the southwest of the USSR (using space survey materials). 1: 1000000. (1988). Ed. N.A. Krylov. Moscow: Mingeo USSR, 41 (in Russian).
  45. Map of the location of oil and gas prospective pro­vinces and areas of Ukraine by geophysical data. 1:4000000 (2004). Ed. V.I. Starostenko. Kyiv: Ukr.DGRI (in Ukrainian).
  46. Meng, H., Shi, Q., Liu, T., Liu, F.X, & Chen, P. (2019). The percolation properties of electrical conductivity and permeability for fractal porous media. Energies, 12.1085, https://doi.org/10.33990/en12 061085.
  47. Parfeevets, A.V., Sankov, V.A., 2018. Geodynamic Conditions for Cenozoic Activation of Tectonic Structures in Southeastern Mongolia. Geodyna­mics and Tectonophysics, Publ. of the Earth’s Crust Siberian Branch, RAS, 9, 3, 855-888, https://doi.org/10.5800/GT-2018-9-3-0374.
  48. Prikhodko, V. L., & Prikhodko, M. V. (2005). Trapezoidal formation of Volyn and native-mineral fertiliza­tion. Collection of scientific works of UkrDGRI, 1, 101-109 (in Ukrainian).
  49. Ryabenko, V. A. (1970). The main features of the tectonic structure of the Ukrainian crystalline shield. Kyiv: Nauk. Dumka, 128 p. (in Russian).
  50. Salishchev, K. A. (1987). Design and mapping. Mos­cow. MSU Publishing House, 240 p. (in Russian).
  51. Sarafian, E., Evans, R. L., Abdelsalam, M. G., Atek­wana, E., Elsenbeck, J., Jones, A. G., & Chikambwe, E. (2018). Crustal conductors along shear and suture zones – graphite and sulphides that expe­rienced shearand metamorphism. Gondwana Res., 54, 38-49, https://doi.org/10.1016/j.gr.2017.09. 007.
  52. Semenov, V. Y., Pek, J., Adam, A., Jozwiak, W., Ladanyvskyy, B., Logvinov, I., Pushkarev, P., & Vozar J. (2008). Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project. Acta Geophysica, 56, 4, 957-981, https://doi.org/10.2478/s11600-008-0058-2.
  53. Shankland, T., Waff, H. (1977). Partial melting and electrical conductivity anomalies in the Upper Mantle. J. Geophys. Res., 82, 33, 5409-5417. https://doi.org/10.1029/JB082i033p05409
  54. Shepel, S. I. (2003). Electrical properties of rocks under thermobaric conditions of the lithosphere and geoelectric models. Habil. Thesis 04.00.22, Kiev, 2003, 411 p. (in Russian).
  55. Shcherbak, M. P., & Bobrov, O. B. (2006). Mineral deposits of Ukraine. I: Metalliferous mineral deposits. Kyiv – Lviv. “Centre of Europe” Publ. House, 785 p. (in Ukrainian).
  56. Shirkov B. I., Burakhovich, T. K., & Kushnir, A. N. (2017). Three-dimensional geoelectric model of the Golo­vanevsk suture zone of the Ukrainian Shield. Geofiz. Zhurn., 1, 39, 41-60 (in Russian), https://doi.org/10.24028/gzh.0203-3100.v39i1. 2017.94010.
  57. Siripunvaraporn, W., Egbert, G. (2000). An efficient data-subspace inversion method for 2-D magne­totelluric data. Geophysics, 65, 3, 791–803. https://doi.org/10.1190/1.1444778
  58. Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uye­shima, M. (2005). Three-dimensional magnetotel­luric inversion: data-space method. Phys. Earth Planet. Interiors. 150, 3-14, https://doi.org/10. 1016/j.pepi. 2004.08.023.
  59. Sollogub, V. B., 1980. Lithosphere of Ukraine. Kiev: Nauk. Dumka, 184 p. (in Russian).
  60. Srebrov, B., Logvinov, I., Rakhlin, L., Kováčiková, S. (2018). Results of the magnetotelluric investiga­tions at geophysical observatories in Bulgaria. Geophys. J. Int., 215, 165-180, https://doi.org/10.1093/gji/ ggy268.
  61. Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Sroda, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolo­miyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H., & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat – Dnieper – Donets Basin (Belarus and Ukraine). Geophys. J. Int., 212,1932–1962, https://doi.org/10.1093/gji/ggx 509.
  62. Tarasov, V. N., & Logvinov, I. M. (2020). Using the TAR3D program for 3D data visualization in geoelectric studies. Proceedings of the conference Geoinformatics, Theoretical and Applied Aspects, 2020, 1-5, https://doi.org/10.3997/2214-4609. 2020geo020.
  63. Thybo, H., Janik, T., Omelchenko, V. D., Grad, M., Garetsky, R. G., Belinsky, A.A., Karatayev, G. I., Zlotski, G., Knudsen, E., Sand, R., Yliniemi, J., Tiiro, T., Luosto, U., Komminaho, K., Giese, R., Guterch, A., Lund, C.E., Kharitonov, O.M., Il­chenko, T. V., Lysynchuk, D. V., Skobolev, V. M., & Doody, J. J. (2003). Upper lithospheric seismic velocity structure across the Pripyat Trough and the Ukrainian Shield along the EUROBRIDGE’97 profile. Tectonophysics 371, 1/4, 41-79, https://doi.org/10.1016/S0040-1951(03)00200-2.
  64. Tregubenko, V. I., Lukin, O. E., Kremnetsky, O. O., Petrovsky, O. P., Kostenko, M. M., Slonitska, S. G, Shimkiv, L. M., Nikitash, O. B, Dzyuba, B. M., Nechaeva, T. S, & Ipatenko, S. P. (2009). Investigation of anomalous geophysical zones of the Ukrainian Shield adjacent to oil-gas basins with the method of evaluation of their oil and gas content (2005-2009). Kyiv: Geoinform. 405 p. (in Ukrainian).
  65. Unsworth, M., & Bedrosian, P. A. (2004). On the geo­electric structure of major strike-slip faults and hear zones. Earth Planet Space, 56, 12, 1177-1184, https://doi.org/10.1186/BF03353337
  66. Usenko, I. S. (Ed.) (1982). Metamorpism of the Ukrainian shield. Kiev: Naukova Dumka. 1982. 307 p. (in Russian).
  67. Van Zuilen, M. A., Lepland, A., & Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Letters to Nature, 418, 627-630, https: //www.nature.com/articles/nature00934.
  68. Verkhovtsev, V. (2006). Newest vertical crustal movements in Ukraine, their relationship with linear and circular structures. In: Power Earth, its geological and environmental displays, scientific and practical use. Kyiv: KNU. 129-137 (in Ukrainian).
  69. Wang, H., van Hunen, J., & Pearson, D. G. (2015). The thinning of subcontinental lithosphere: The roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst., 16, 1156-1171, https://doi.org/10.1002/2015GC005748.
  70. Wu, P., Johnston, P., & Lambeck, K. (1999). Postglacial rebound and fault instability in Fennoscandia. Geophys. J. Int., 139, 657-670. https://doi.org/10.1046/j.1365-246x.1999.00963.x
  71. Yatsenko, V. G. (1998). Regularities of the spatial arrangement of graphite manifestations on the Ukrainian shield. Aspects of mineralogy in Ukraine. Kiyv: GNC ROS. 254-270 (in Russian).
  72. Yin, Y., Unsworth, M., Liddell, M., Pana, D., & Cra­ven, J.A. (2014). Electrical resistivity structure of the Great Slave Lake shear zone, northwest Ca­nada: implications for tectonic history. Geophys. J. Int., 199, 178-199, doi:10.1093/gji/ggu251.
  73. Yushyn, A. A., Moroz, V. S., & Proskurko, L. I. (2013). Genetic peculiarities of manifestations of precious and non-ferrous metals mineralization in carbo­niferous complexes of the Early Pre-Сambrian at the Krivoi Rih basin. Geology and Mineralogy Bulletin of the Krivoi Rih National University, 1-2, 12-18, (in Russian).