Two Holocene impact craters at Emmerting, Germany: deformation, fracturing, and their relationships to the melting and decarbonization

https://doi.org/10.23939/jgd2025.01.005
Received: December 10, 2024
1
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
2
Institute of Geonics, Czech Academy of Sciences
3
CoalExp, Pražmo, Czech Republic
4
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
5
Institute of Geonics, Czech Academy of Sciences
6
Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Prague, Czech Republic
7
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
8
Nuclear Physics Institute, Czech Academy of Sciences
9
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
10
Institute of Hydrogeology, Engineering, Geology and Applied Geophysics, Charles University; Geophysical Institute, University of Alaska

In two craters near Emmerting, three major processes which variably affected the original pebbles are documented in the following order: 1. Deposition of hot material which solidified to glass (usually thin and transparent) or reacted with carbonate to form expanded “pumice” on the surface of pebbles. 2. Ductile deformation of variable intensity (with limited fragile deformation but intense fracturing of mineral grains), using older as well as newly formed discontinuities; in some cases this deformation is consistent with extreme strain, rendering a human-induced origin highly improbable. The largely ductile character of deformation points to a high temperature, but it was not necessarily accompanied by melting. 3. Solidification of melts generated within pebbles or derived from secondary projectiles. These disequilibrium melts were hot enough to have very low viscosity (in some cases, they may have also been injected by high pressure/strain, or sucked in), which enabled them to fill even thin fractures in individual mineral grains; gas expansion also formed extrusions resembling miniature volcanic features on the surface of some pebbles. In some zircon grains baddeleyite was observed, probably formed by shock metamorphism. However, no additional evidence was found to suggest pressures exceeding the threshold typically required for shock-induced melting (~8 Gpa or more). Nevertheless, the energy transformed during repeated mutual collisions may have heated the interior of pebbles sufficiently. Origin of the depression at Grabenstätt-Kaltenbach is unclear, the disequilibrium melting and decarbonization may also be explained by anthropogenic processes.

  1. Anfinogenov, J., Budaeva, L., Kuznetsov, D., Anfinogenova, Y. (2014). John's Stone: A possible fragment of the 1908 Tunguska meteorite. Icarus, 243, 139-147. https://doi.org/10.1016/j.icarus.2014.09.006
  2. Anonymus. UmweltAtlas Bayern. (Web version: https://www.lfu.bayern.de/geologie/geo_karten_schriften/gk500/index.htm). Bayerisches Landesamt für Umwelt, Augsburg, Germany (accessed in 2023).
  3. Bartuška, M. (ed., 2001). Vady skla (Glass defects). Práh. Prague, Czech Republic; 606 pp.
  4. Buhl, E., Poelchau, M.H., Dresen, G., Kenkmann, T. (2013). Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program. Meteor. Planet. Sci. 48, 71-86. https://doi.org/10.1111/j.1945-5100.2012.01431.x
  5. Childe, V.G., Thorneycroft, W. (1938). The experimental production of the phenomena distinctive of vitrified forts. Proc. Soc. Antiq. Scot. 72, 44-55. https://doi.org/10.9750/PSAS.072.44.55
  6. Darga, R., Wierer, J.F. (2009). Der Chiemgau-Impakt - eine Spekulationsblase - Oder: Der Tüttensee ist KEIN Kometenkrater. in: Auf den Spuren des Inn-Chiemsee-Gletschers - 2. Exkursionen, pp. 174-185. München (Pfeil), ISBN 978-3-89937-104-8.
  7. Doppler, G., Geiss, E. (2005): Der Tüttensee im Chiemgau - Toteiskessel statt Impaktkrater. Bayerisches Landesamt für Umwelt, Germany. Available online: https://www.lfu.bayern.de/ geologie/meteorite/bayern/doc/tuettensee.pdf
  8. Ernstsson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M.A., Sudhaus, D., Zeller, K.W. (2010): The Chiemgau crater strewn field: evidence of a Holocene large impact event in southeast Bavaria, Germany. J. Sib. Federal Univ., Eng. Technol., 1, 72-103.
  9. Fazio, A., D'Orazio, M., Cordier, C., Folco, L. (2016). Target-projectile interaction during impact melting at Kamil Crater, Egypt. Geochim. Cosmochim. Acta 180, 33-50. https://doi.org/10.1016/j.gca.2016.02.003
  10. Fehr, K.T., Pohl, J., Mayer, W., Hochleitner, R., Faßbinder, J., Geiß, E., Kerscher, Y. (2005). A meteorite impact crater field in eastern Bavaria? A preliminary report. Meteor. Planet. Sci. 40, 187-194. https://doi.org/10.1111/j.1945-5100.2005.tb00374.x
  11. Fitzenreiter, R. et al. (24 co-authors) (2025): Evidence of a 12,800-year-old Shallow Airburst Depression in Louisiana with Large Deposits of Shocked Quartz and Melted Materials. Airbursts and Cratering Impacts, 3, 47 pp, https://doi.org/10.14293/ACI.2025.0004.
  12. French, B.M. (1998). Traces of catastrophe. A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston, 120 pp.
  13. Freude, F. (2007): Strukturgeologisch-petrographische Untersuchungen an Karbonatgeröllen einer Schotterterrasse im Chiemgau und Diskussion der Ergebnisse im Rahmen der Impakt-Streufeld-Hypothese. - Master thesis, Friedrich-Alexander-Universität, Erlangen, 64 pp.
  14. Friend, C., Dye, J., & Fowler, M. (2007). New field and geochemical evidence from vitrified forts in South Morar and Moidart, NW Scotland: Further insight into melting and the process of vitrification. Journal of Archaeological Science, 34, 1685-1701. https://doi.org/10.1016/j.jas.2006.12.007
  15. Fujiwara, A., et al. (2006). The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 312, 1330-1334. https://doi.org/10.1126/science.1125841
  16. Haack, H., Greenwood, R.C., Busemann, H. (2016): Comment on "John's stone: A possible fragment of the 1908 Tunguska meteorite". Icarus, 265, 238-240. https://doi.org/10.1016/j.icarus.2015.09.018
  17. Housen, K.R., Sweet, W.J., Holsapple, K.A. (2018). Impacts into porous asteroids. Icarus, 300, 72-96. https://doi.org/10.1016/j.icarus.2017.08.019
  18. Kalenda, P., Thinová, L., Tengler, R., Procházka, V., Mizera, J., Martinec, P., Kletetscka, G., Trojek, T. (2024). Two impact craters at Emmerting, Germany: field documentation and geophysics. Geodynamics, 37, 27-44. https://doi.org/10.23939/jgd2024.02.027
  19. Kowitz, A., Güldemeister, N., Reimold, W.U., Schmitt, R.T., Wünnemann, K. (2013). Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: laboratory observations and meso-scale numerical modeling. Earth Planet. Sci. Lett., 384, 17-26. https://doi.org/10.1016/j.epsl.2013.09.021
  20. LeCompte, M. A. et al. (2025): A Tunguska sized airburst destroyed Tall el-Hammam, a Middle Bronze Age city in the Jordan Valley near the Dead Sea (Expanded). Airbursts and Cratering Impacts, 3, 87 pp, https://doi.org/10.14293/ACI.2025.0003.
  21. Love, S. G.; Hörz, F.; Brownlee, D. E. (1993). Target porosity effects in impact cratering and collisional disruption. Icarus, 105, 216-224. https://doi.org/10.1006/icar.1993.1119
  22. Neumair, A., Waitzinger, M., Finger, F. (2016). Interesting glass coatings on cobbles and rock fragments from the Alpine foreland, SE-Bavaria, Germany, and their possible origin. GeoTirol 2016, A233.
  23. Osinski, G. R. et al. (11 co-authors) (2022). Impact Earth: A review of the terrestrial impact record. Earth-Sci. Rev. 232, 104112, 48 pp. https://doi.org/10.1016/j.earscirev.2022.104112
  24. Piatak, N., Ettler, V. (2021). Metallurgical Slags: Environmental Geochemistry and Resource Potential. ‎ Royal Society of Chemistry: Cambridge, UK, 305 pp. https://doi.org/10.1039/9781839164576
  25. Pietrek, A.; & Kenkmann, T. (2016). Ries Bunte Breccia revisited: Indications for the presence of water in Itzing and Otting drill cores and implications for the emplacement process. Meteorit. Planet. Sci., 51, 1203-1222. https://doi.org/10.1111/maps.12656
  26. Procházka V., & Kletetschka G. (2016). Evidence for superparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. 47th LPSC, Abstract #2763.
  27. Procházka V., & Trojek T. (2017): XRF- and EMP- investigation of glass coatings and melted domains of pebbles from craters in Chiemgau, Germany. 48th LPSC, Abstract #2401.
  28. Procházka, V. (2023). Melt behavior in two impact craters at Emmerting, Germany: Deformation, expansion, injections, and the role of underpressure and mutual collisions of pebbles. 54th LPSC, Abstract #2102.
  29. Řanda, Z., Mizera, J., Frána, J., & Kučera, J. (2008). Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteorit. Planet. Sci., 43, 461-477. https://doi.org/10.1111/j.1945-5100.2008.tb00666.x
  30. Rösler, W., Patzelt, A., Hoffmann, V., & Raeymaekers, B. (2006). Characterization of a small crater-like structure in S.E. Bavaria, Germany. Proc. 1st Int. Conf. on Impact Cratering in the Solar System, Noordwijk, pp. 67-71. European Space Agency.
  31. Schüssler, U. (2005). Chiemgau-Impakt: Petrographie und Geochemie von Geröllen mit Deformationsmerkmalen und starker thermischer Beanspruchung aus dem nördlichen Bereich des Impakt-Areals (research report, 28 pp.), https://nbn-resolving.org/urn:nbn:de:101:1-201005228993.
  32. Strassburger, M., Wieser, J. (2014). Early and high medieval iron production in the Grubet near Aichach. Acta Rer. Natur., 16, 33-50.
  33. Tancredi, G. et al. (15 co-authors) (2009). A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteorit. Planet. Sci., 44, 1967-1984. https://doi.org/10.1111/j.1945-5100.2009.tb02006.x