A principal breakthrough in georadar technology – ROTEG

Received: November 23, 2022
Institute of Rock Structure and Mechanics of the Academy of Sciences of the Czech Republic
Mělník, Czech Republic

The purpose of the research was to verify the extraordinary big theoretical penetration depth of new developed georadar in the real conditions of karsts areas. The new kind of the Ground Penetrating Radar (GPR) – Roteg – was developed in 2013 (RTG-Tengler 2013). Its technical parameters (pulse peak on the transmitting antenna 20 kV or more, and the sensitivity of the receiving antenna at least 2 uV, i.e. the real signal detection level around 20 uV) express that the real signal detection sensitivity is 9 orders, i.e. 180 dB. Such sensitivity means that the real penetration depth should be two orders bigger than in the case of common GPR´s. We tested the real penetration depths in the suitable environmental conditions over the caves in the Moravian Karst and in Slovenia near Postojna cave. The measurements results showed that reflections from known caves are reliably detectable at depths of 40-210 m below the surface. Reflections from the geological structures up to a depth of 480 m, in which the bottom of Lift II is probably located, were observable on the profile above the Hranická abyss. The new kind of Roteg georadar with 20 kV pulses on the transmitting antennas was able to detect reflections from the Devon – Brno Granite contact at a depth of up to 850 m in the case of optimal conditions in the karst without soil cover (in the Malá Dohoda quarry in the Moravian Karst). The radarogram showed a change in the lithology between the Vilémovice – Lažánky limestone and layers of clasts in the bottom of limestone strata. Both of the tests mentioned above confirmed the extraordinary big penetration depth of the GPR signal which exceeded 500 m in karst conditions when using the maximum power on transmitting antennas. The quite new kind of GPR called Roteg with the extraordinary high voltage on transmitting antenna and pulse instead of harmonic signal generation of transmitted signal allows reach two orders bigger penetration depths than the common GPRs.. The new kind of Roteg GPR makes it possible to obtain data (especially from karst areas) from depths that were previously only accessible by seismic methods or boreholes. GPR measurements are orders of magnitude cheaper and much faster in the field.

  1. Annan, A. P. (2005). Ground-penetrating radar. In: Near surface geophysics. Butler DK (ed). Society of exploration geophysicists: Tulsa, Investigations in Geophysics 13; 357-438. https://doi.org/10.1190/1.9781560801719.ch11
  2. Baldík, J. (2016). The basic geological map of Czech Republic 1:25000. List 24-233: Ostrov and Macochy (in Czech).
  3. Blecha, V., & Kalenda, P. (2004). Gravimetric survey of the Holštejnská cave in the Moravian Karst. Zprávy o geol.  výzkumech v roce 2003, 128-130 (in Czech).
  4. Blecha, V., Kalenda, P., Mravec, P., & Kučera, J. (2005). Gravimetric survey of the continuation of the Holstein Cave. Speleofórum 2005, 6-8 (in Czech).
  5. Celarc, B., Jurkovšek, B., Placer, L., & Milanič. B. (2012). The structural building of the area between the Dinarides and the Istrian peninsula: the influence of plate tectonics on the construction of large infrastructural facilities (example 2. Tira Divača – Koper). Razprave 6. posvetovanja slovenskih geotehnikov, Lipica, 14-15. junij 2012. SloGeD (in Slovenian).
  6. Chamberlain, A. T., Sellers, W., Proctor, C. and Coard, R. (2000). Cave detection in limestone using ground penetrating radar. Journal of Archaeological Science, 27, 957-964. https://doi.org/10.1006/jasc.1999.0525.
  7. Gosar, A. (2012). Analysis of the capabilities of low frequency ground penetrating radar for cavities detection in rough terrain conditions: The case of Divača cave, Slovenia. Acta Carsologica, 41, 1, 77-88. https://doi.org/10.3986/ac.v41i1.49.
  8. Gosar, A., and Čeru, T. (2016): Search for an artificially buried karst cave entrance using ground penetrating radar: a successful case of locating the S-19 Cave in the Mt. Kanin massif (NW Slovenia). International Journal of Speleology, 45, 2, 135-147. https://doi.org/10.5038/1827-806X.45.2.1979
  9. Gospodarič R. (1985). On the spelogenesis of Divaška jama and Trhlovca Cave. Acta carsologica, xIII: 5-32, Ljubljana.
  10. Guba, M. (2016). Press release on the in-depth exploration of the Hranická abyss and the achievement of a new maximum depth of -404 m. http://www.hranickapropast.cz/.
  11. Hašek, V. and Štelcl, O. (1973). Some results of geophysical research of the Moravian Karst. Československý kras, 24: 37-49 (in Czech).
  12. IRIS GPRs (2019): Ground penetrating radars by Mastrad Limited, Douglas, United Kingdom. http://www.mastrad.com/gpr.htm.
  13. Kalenda, P., Blecha, V., Hrutka, M., & Mravec, P. (2006). Bukovinky – gravimetric measurement in the Moravian Karst. Speleofórum 2006, 77-78 (in Czech).
  14. Kalenda, P., Duras, R., & Kučera, J. (2008). Geophysical mapping using the very long wave method in the vicinity of the Hranická abyss - first results. Speleofórum 2008, Vol. 27, 128-132 (in Czech).
  15. Kalenda, P., Tengler, R.; Doležal, F. K., Reichel, V. and Chlup, L. (2016). Geophysics Week 2015. Speleo. 68, 15-23. ISSN 1213-4724 (in Czech).
  16. Kalenda, P. and Tengler, R. (2016). Comparison of the results of geophysical methods above the Holstein Cave. Speleofórum 2016. Vol. 35, 31-34 (in Czech).
  17. Kalenda, P., Tengler, R., Cendelín, R., Slezák, L. and Pokorný, J. (2017a). Georadar measurements above Pekárna cave 2016. Speleofórum 2017. Vol. 36, 30-35 (in Czech).
  18. Kalenda, P., Tengler, R., Blatnik, M. and Drole, F. (2017b). Georadar measurements Postojna 2016. Speleofórum 2017. Vol. 36, 87-89 (in Czech).
  19. Kalenda Pavel, Tengler Rudolf, Cendelín Richard, Slezák Ladislav, & Pokorný Josef (2018a). Georadar measurements above Pekárna cave 2017. Speleofórum 2018. Vol. 37, 25-29 (in Czech).
  20. Kalenda, P., Tengler, R., Šebela, S., Blatnik, M., & Gosar, A. (2018b). Detection of Divaška jama behind Trhlovca jama. Acta Carsologica, Vol. 47, No. 2-3, 153-167. https://doi.org/10.3986/ac.v47i2-3.5187.
  21. Kalenda, P., Tengler, R. & Šebela, S. (2018c). Where do the upper floors of the Škocjan Caves go from Martel's Chamber? Speleofórum 2018. Vol. 37, 72-75 (in Czech).
  22. Kalenda, P., Tengler, R., & Geršl, M. (2020): Test of the maximum penetration depth of the Roteg GPR above the Hranice Abyss and in the Moravian Karst. GVMS, Vol. 27, No.1-2, 98-105. https://doi.org/10.5817/GVMS2020-13587, https://journals.muni.cz/gvms/article/view/13587.
  23. Łyskowski, M., Mazurek, E. and Zientek, J. (2014). Ground Penerating Radar investigation of limestone karst at the Odstrzelona Cave in Kowala, Swietokrzyskie Mountains, Poland. Journal of Cave and Karst Studies, v. 76, no. 3, 184-190. https://doi.org/10.4311/2014EX0001.
  24. Musil, J. (2017). The Hranice Abyss became the deepest underwater abyss in the world! In: Bosák P, Geršl M, Novotná J (ed) Speleofórum, vol. 36. Proceedings from Meeting of cavers in the Moravian Karst. Czech Speleological Society, Sloup, Czech Republic. P. 10-15.
  25. Primorske novice 28.1.2019: https://www.primorske.si/primorska/srednja-primorska/jamarji-so-se-prebili-do-novih-delov-skocjanskih-j?fbclid=IwAR0aMx9_AaEzLB3Q_8KxUWRzIB51pzvy558HTgXj0x0o8JC-zbuBN9SabdI (in Czech).
  26. Rez, J. (2010). Structural-geological development of the southern part of the Moravian Karst. Masarykova Univerzita, Brno (in Czech).
  27. RTG-Tengler (2013). Available from: http://georadar.rtg-tengler.cz/geologicky-zlom-u-sobotky .
  28. Slezák, L. (1955–1956). Geological research of Devonian limestones in the vicinity of Mokré. Diplomová práce: 1–76. Universita Jana Evangelisty Purkyně. Brno (in Czech). 
  29. Slezák, L. and Štelcl, O. (1963). Geological conditions of the southern part of the Moravian Karst and adjacent areas. Časopis Moravského muzea, 48, 89–104 (in Czech).
  30. Slezák, L., Cendelín, R., & Pokorný, J. (2016). Back to the Pekárna cave. Speleofórum 2016, 35, 29-31 (in Czech).
  31. Smith, D. G. and Jol, H. M. (1995). Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in Quaternary sediments. Journal of Applied Geophysics, 33, 1-3, 93-100. https://doi.org/10.1016/0926-9851(95)90032-2.
  32. STA.novice 29.1.2019: https://www.facebook.com/STA.Novice/videos/1184180211759505/ (in Czech).
  33. Tengler, R., Kalenda, P., Doležal, F.K. and Chlup, L. (2016). Testing a new type of georadar with a big penetration depth. Speleofórum 2016, Vol. 35, 35-42 (in Czech).
  34. Tengler, R., & Kalenda, P. (2019). Report of georadar (GPR) measurements in Slovenia 2019. Internal report of Črnotiče quarry.
  35. Van der Kruk, J., Slob, E.C. and Fokkema, J.T. (1999). Background of ground-penetrating radar measurements. Geologie en Mijnbouw, 77, 177-188. https://doi.org/10.1023/A:1003546619639.
  36. Zámek, E., 7 Zatloukal, R. (1993). 26 years of work in the Holštejn Cave. Speleo, 11, 22-25 (in Czech)