Mathematical study of energy characteristics of centrifugal pump with single-vane impeller

2020;
: pp. 366–372
https://doi.org/10.23939/mmc2020.02.366
Received: June 08, 2020
Accepted: September 01, 2020

Mathematical Modeling and Computing, Vol. 7, No. 2, pp. 366–372 (2020)

1
Sumy State University
2
Sumy State University
3
Sumy State University

In the article, the design of a centrifugal pump with a single-vane impeller is described and a theoretical calculation of such a pump is provided.  The analysis of experimental investigations and the comparison with theoretical calculations are carried out.  For the first time, the operating characteristics of a pump with a single-vane impeller of this type are obtained for different values of the rotation frequency.

  1. Pflejderer K.  Lopatochnye mashiny dlja zhidkostej i gazov.  Moskva, Mashgiz (1960), (in Russian).
  2. Enikeev G. G.  Proektirovanie lopastnyh nasosov: uchebnoe posobie.  Ufa, UGATU (2005), (in Russian).
  3. Ovsjannikov B. V.  Teorija i raschet agregatov pitanija zhidkostnyh raketnih dvigatelej.  Moskva, Mashinostroenie (1986), (in Russian).
  4. Kas'janov V. M., Krivenkov S. V., Hodyrev A. I., Chernobyl'skij A. G.  Gidromashiny i kompressory: konspekt lekcij.  Moskva, RGU nefti i gaza im. I. M. Gubkina (2007), (in Russian).
  5. Rzhebaeva N. K., Rzhebaev Je. E.  Raschet i konstruirovanie centrobezhnyh nasosov: uchebnoe posobie.  Sumy, SumGU (2009), (in Russian).
  6. Naida M. V., Tkachuk Yu. Ya.  Analiz rozrakhunkovykh zalezhnostei, shcho vrakhovuiut vplyv kintsevoho chysla lopastei vidtsentrovoho nasosa na yoho teoretychnyi napir.  Visnyk Sumskoho derzhavnoho universytetu. Seriia Tekhnichni nauky. 1, 86–90 (2013), (in Ukrainian).
  7. Antonenko S. S., Kolisnichenko E. V., Naida M. V.  Metodyka provedennia eksperymentalnykh doslidzhen roboty vidtsentrovo-vykhrovykh stupenei na vysokov`iazkykh ridynakh.  Visnyk Sumskoho derzhavnoho universytetu. Seriia Tekhnichni nauky. 2, 7–13 (2010), (in Ukrainian).
  8. Khomenko A. V., Lyashenko I. A.  A stochastic model of stick-slip boundary friction with account for the deformation effect of the shear modulus of the lubricant.  J. Frict. Wear. 31 (4), 308–316 (2010).
  9. Khomenko A. V., Prodanov N. V., Persson B. N. J.  Atomistic modelling of friction of Cu and Au nanoparticles adsorbed on graphene.  Condens. Matter Phys. 16 (3), 33401 (2013).
  10. Jahnenko S. M.  Gidrodinamicheskie aspekty blochno-modul'nogo konstruirovanija dinamicheskih nasosov: diss. kand. tehn. nauk.  Sumy, SumGU (2003), (in Russian).
  11. Rudnev A. S.  Sozdanie centrobezhnyh konsol'nyh nasosov: avtoref. diss. kand. tehn. nauk.  Moskva, MGTU im. Baumana (1990), (in Russian).
  12. Sapozhnikov S. V.  Uchet gazovoj sostavljajushhej perekachivaemoj sredy pri opredelenii konstrukcii i rabochej harakteristiki dinamicheskogo nasosa: avtoref. diss. kand. tehn. nauk.  Sumy, SumGU (2002), (in Russian).
  13. Kolіsnіchenko E. V., Najda M. V., Hovans'kij S. O.  Eksperimental'ne doslіdzhennja roboti nasosa z vіdcentrovo-vihrovoju stupennju.  Vіsnik nacіonal'nogo tehnіchnogo unіversitetu "HPІ" (Tematicheskij vypusk "Novye reshenija v sovremennyh tehnologijah". 34, 119–123 (2011), (in Ukrainian).
  14. Khomenko A., Troshchenko D., Metlov L.  Thermodynamics and kinetics of solids fragmentation at severe plastic deformation.  Condens. Matter Phys. 18 (3), 33004 (2015).
  15. Metlov L., Myshlyaev M., Khomenko A., Lyashenko I.  A model of grain boundary sliding during deformation.  Tech. Phys. Lett. 38, 972–974 (2012).
  16. Minemura K., Uchiyama T., Jhara M., Furukawa H.  The influence of the outlet angle of the blades and rotation frequency on the characteristics of the pump when pumping a two-phase fluid.  Nihon Kikai gakkai rombunshu. 60, 920–925 (1994).
  17. Furukawa A., Shirasu S., Sato S.  Experimental study of two-phase water-air flow in the impeller of a centrifugal pump.  Nihon Kikai gakkai rombunshu. 60, 3421–3427 (1994).
  18. Teremante A., Moreno N., Rey R., Noquera R.  Numerical turbulent simulation of the two-phase flow (liquid/gas) through a cascade of an axial pump.  Trans. ASME. J. Fluids Eng. 124, 371–376 (2002).
  19. Murakami M., Minemura K.  Effects of entrained air on the performance of centrifugal pumps under cavitating conditions.  B. JSME. 23, 1435–1442 (1980).
  20. Trofimenko P., Naida M.  Analysis of experimental studies of energy characteristics of a pump with centrifugal vortex stage.  Int. Appl. Mech. 53, 116–120 (2017).