Modeling of Steady-state Modes of the Electrical Network From the Synchronous Electric Drive of Hydraulic Loading

2019;
: pp. 36 - 45
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Pumping stations that provide fluid transportation by pipeline are significant consumers of electricity. Energy overruns due to sub-optimal modes of operation of individual high-power units or sub-optimal number of simultaneously operating less powerful units are quite significant and can have a significant impact on overall energy consumption. Energy overruns at pumping stations also lead to significant overruns in electricity grid elements.

The modes of operation of powerful pumping stations are characterized by a slow change of coordinates over time. In many cases, this makes it possible to reasonably consider such modes as the set of quasi-stationary states that change each other without taking into account the influence of transients. The analysis of the nature of typical modes of pumping units of high-power pumping stations and their power supply systems substantiates the feasibility of isolating the studies of the steady state modes. The overwhelming amount of scientific work devoted to the modeling and analysis of modes of operation of high-power pumping stations concerns asynchronous electric drive pump units. The implementation of prospective controlled synchronous electric drive at pumping stations requires the creation of appropriate research tools.

Conducting full-scale experiments at operating pumping stations is costly, and quite often unacceptable, due to the need to disrupt their continuous functioning during experiments. Therefore, modeling the processes occurring in such objects is in most cases the only possible means of safely investigating them, as well as predicting energy-saving modes and measures. It is shown that the synthesis of energy-efficient steady-state control systems for such objects to improve their energy efficiency is usually not possible without computer simulation of the power unit. A mathematical model of steady state modes of power supply with frequency controlled synchronous electric drive of a centrifugal pump is offered. Using the created model, a number of test calculations of the established modes were performed. The graphical dependences of the basic coordinates on the relative flow rate of the working fluid at the inlet of the pipeline are presented.

Shabanov V. A., Nykulyn O. V. Vektornoe rehulyrovanye momenta synkhronnoho эlektrodvyhatelia burovoho nasosa // Yzvestyia VUZov. Problemы эnerhetyky. 2011. No. 9-10. URL: https://cyberleninka.ru/article/n/vektornoe-regulirovanie-momenta-sinhro... (data obrashchenyia: 27.05.2019). [in Russian].

Shabanov V. A., Nykulyn O. V. Model synkhronnoho dvyhatelia burovoho nasosa v srede Symulynk // Эlektro- tekhnycheskye kompleksы y systemы. Mezhvuzovskyi nauchnыi sbornyk. Ufa: UHATU, 2009. S. 70-75. [in Russian].

Razrabotka y yssledovanye chastotno-rehulyruemoho synkhronnoho эlektropryvoda burovoho nasosa: monohrafyia / O.V. Nykulyn. Moskva: Rusains, 2017. 152 s. [in Russian].

Mashnev A. E. Эkonomyia эlektroэnerhyy pry vodosnabzhenyy bolshoho horoda / A. E. Mashnev, Y. V. Bovdui // Vestnyk Nats. tekhn. un-ta "Kharkovskyi polytekhnycheskyi ynstytut". 2008. Vыp. 30. S. 507-508 [in Russian].

Khakymullyn B. R., Bahautdynov Y. Z. Hydroakkumulyruiushchye эlektrostantsyy // Ynnovatsyonnaia nauka. 2016. No. 4-3 (16). URL: https://cyberleninka.ru/article/n/gidroakkumuliruyuschie-elektrostantsii-1 (data obrashchenyia: 17.05.2019) [in Russian].

Borysenko V. P. Realizatsiia enerhozberihaiuchoi systemy elektropryvodu dlia bahatopompuvalnoi stantsii DPVZ / V. P. Borysenko, S. V. Hryhoriev, V. P. Ovsiannikov, O. V. Holovin // XIII mezhdunarodnaia nauch.-tekhn. konf. "Mashynostroenye y tekhnosfera XXI veka": sb. tr. v 2 t. Sevastopol, 2006. T. 1. S. 138-140. [in Russian].

Braslavskyi Y. Ya. Эnerhosberehaiushchyi asynkhronnыi эlektropryvod / Y. Ya. Braslavskyi, Z. Sh. Yshmatov, V. N. Poliakov. M.: Akademyia, 2004. - 256 s. [in Russian].

Kutsyk A. S. Matematychna model systemy "chastotno-kerovanyi elektropryvod - nasos - vodoprovidna merezha" / A. S. Kutsyk, A. O. Lozynskyi, O. F. Kinchur // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Elektroenerhetychni ta elektromekhanichni systemy. 2015. No. 834. S. 48-55 [in Ukrainian].

Nykolaev V. H. Эnerhosberehaiushchye sposobы upravlenyia lopastnыmy nasosnыmy ahrehatamy v systemakh vodosnabzhenyia pry nestatsyonarnoi nahruzke [Elektronnyi resurs] // Santekhnyka. Rubryka "Vodosnabzhenye" : zhurnal. 2006. No. 4. S. 22-28. [in Russian].

Fedorov A. V. Prymenenye ystochnykov bespereboinoho pytanyia v эnerhetycheskykh ustanovkakh promыshlennыkh obъektov v neftehazovoi otrasly / A. V. Fedorov, S. V. Baburyn, A. N. Makhalyn // Nauka y tekhnyka v hazovoi promыshlennosty, 2014. No2. S. 70-74. [in Russian].

K. Ou et al., "MMC-HVDC Simulation and Testing Based on Real-Time Digital Simulator and Physical Control System", in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 1109- 1116, Dec. 2014.
https://doi.org/10.1109/JESTPE.2014.2337512

Lysiak V. H. Uzahalnena matematychna model ustalenykh rezhymiv elektropostachalnoi systemy pompovoi stantsii / V. H. Lysiak, P. F. Hoholiuk // Pratsi Instytutu elektrodynamiky Natsionalnoi akademii nauk Ukrainy. 2015. Vyp. 42. S. 22-26. [in Ukrainian].

Paranchuk Y. S., Lysiak V. H. Energy efficient power supply system and automatic control of the complex "power supply - pumping station" modes. Naukovyi Visnyk NHU, 2018, No. 3, pp. 115-124.
https://doi.org/10.29202/nvngu/2018-3/16

Abdulla Ybrahym, Moslem Al-Udeinat. Modelyrovanye y optymyzatsyia rezhymov rabotы synkhronnыkh эlektrodvyhatelei krupnыkh nasosnыkh stantsyi: avtoref. dys. na soyskanye nauch. stepeny kand. tekhn. nauk : spets. 05.09.03 "Эlektrotekhnycheskye kompleksы y systemы" / Tashkentskyi Hosudarstvennыi tekhnycheskyi unyversytet ym. Aburakkhmana Beruny. Tashkent, 1998. 22 s. [in Russian].

B. Singh and S. Murshid, "A Grid-Interactive Permanent-Magnet Synchronous Motor-Driven Solar Water-Pumping System", in IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 5549-5561, Sept.-Oct. 2018.
https://doi.org/10.1109/TIA.2018.2860564

Gogolyuk P. Mathematical Modeling Of A Synchronous Motor And Centrifugal Pump Combination In Steady State [Electronic resource] / P. Gogolyuk, V. Lysiak, I. Grinberg // IEEE PES Power Systems Conference & Exposition, 10-13 October 2004, New York City, NY : Conference Publications. 2004. Vol. 3. P. 1444-1448.

Kostyshyn, V. S. Simulation of performance characteristics of centrifugal pumps by the electro- hydrodynamic analogy method / V. S. Kostyshyn, P. O. Kurlyak // Journal of Hydrocarbon Power Engineering. - 2015. Vol. 2, No. 1. P. 24-31.

Lysiak V. H. Matematychne modeliuvannia ustalenykh rezhymiv elektropostachalnoi systemy pompovoi stantsii // Tekhnichna elektrodynamika. K., 2008. No. 2. S. 43-50.

V. Lysiak, M. Oliinyk. Modeling of Hydraulic Load of Electric Drive in Electrical Complex of Pumping Station. Energy Eng. Control Syst., 2018, Vol. 4, No. 1, pp. 31-36. [in Ukrainian].
https://doi.org/10.23939/jeecs2018.01.031