Production of Iron, Titanium Dioxide Modofocations and Titanium

2020;
: pp. 227 - 69
1
Nagiyev Institute of Catalysis and Inorganic Chemistry ANAS; Azerbaijan Technical University
2
Nagiyev Institute of Catalysis and Inorganic Chemistry ANAS
3
Nagiyev Institute of Catalysis and Inorganic Chemistry ANAS
4
Nagiyev Institute of Catalysis and Inorganic Chemistry ANAS

Conditions for the reduction of titanium-magnetite concentrates (main components are Fe 52–54 % and TiO2 5–7 %) by natural gas for obtaining iron powder and titanium fraction were studied. Based on the theory of granulation in the drum apparatus, granules with 25 % of soda fluxing additive with optimum diameter, humidity, strength and porosity were obtained. It was found that the reduction reactions in the temperature range of 1143–1198 K are carried out if a mixture of hydrogen and carbon monoxide is added to the natural gas in amount of 15 vol %. Block-diagrams for processing titanium-magnetite concentrates for the production of iron powder α-Fe (purity 99 %), anatase and rutile modifications of titanium dioxide (99 % TiO2) and titanium with a purity of 99% are presented.

  1. Reznichenko V., Sadykhov G., Karyazin I.: Metally, 1997, 6, 3.
  2. Alizade Z., Mikailova A., Samedzade K.: Azerb. Khim. Zh., 2008, 4, 64.
  3. Mehdilo A., Irannajad M.: Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209
  4. Chen D., Zhao L., Liu Y. et al.: J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052
  5. Dmitriev A., Sheshukov O., Gazaleeva G. et al.: Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283
  6. Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9
  7. Qiu G., Hu T, Bai C. et al.: Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7
  8. Kustov A., Kenova T., Zakirov R., Parfenov O.: Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X
  9. Kopkova E., Shchelokova E., Gromov P.: Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007
  10. Tathavadkar V., Jha A.: Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255.
  11. Kantemirov V., Titov R., Yakovlev A.: Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07
  12. Alizade Z., Mammadov A., Qasimova A. et al.: Azerb. Khim. Zh., 2016, 1, 39.
  13. Mamedov A., Samedzade G.,Gasymova A. et al.: Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248.
  14. Gasymova A., Samedzade G., Kelbaliev G. et al.: Fundamental'nye Issledovaniya, 2017, 9, 36.
  15. Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all.: Elixir Int. J. Mater. Sci., 2016, 96, 41434.
  16. Manhique A.: PhD thesis, University of Pretoria, Pretoria 2012.
  17. Zima T., Prosanov I.: Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195
  18. metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml