Development of Heterogeneous Alkali Methoxide Catalyst from Fly Ash and Limestone

2020;
: pp. 521 - 530
1
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang, Indonesia
2
Department of Chemical Engineering, Institut Teknologi Indonesia
3
Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University
4
Laboratory of Advanced Material, CORES-DU, Jl. Prof. Soedarto SH, Tembalang, Semarang, Indonesia

This study is aimed to use fly ash and limestone as raw materials for preparing alkali methoxide heterogeneous catalysts for transesterification of palm oil into biodiesel. The heterogeneous catalyst was synthesized from fly ash and limestone through wet and dry methods and calcined within 1073–1273 K. X-ray diffraction and scanning electron microscopy analyses indicated the well-dispersed presence of the Ca(OCH3)2 crystal over the fly ash and limestone framework, which was mixed using wet method and calcined at 1073 K (W-800). Results showed that W-800 exhibited larger surface area and more uniform active sites than the other catalysts. About 88.6 % of biodiesel was produced from commercial palm oil with W-800 as the catalyst. The product possesses physicochemical characteristics, such as density, kinematic viscosity and free fatty acid content, which satisfy the international biodiesel standard. The catalyst was used for biodiesel production for four cycles, and the biodiesel yield was maintained up to 91.87 % from the initial value.

  1. Ma F., Hanna M.: Bioresour.Technol., 1999, 70, 1. https://doi.org/10.1016/S0960-8524(99)00025-5
  2. Hadiyanto H., Lestari S., Widayat W.: Bull. React. Eng. Catal., 2016, 11, 21. https://doi.org/10.9767/bcrec.11.1.402.21-26
  3. Widayat W., Wicaksono A., Firdaus L., Okvitarini N.: IOP Conf. Ser. Mater. Sci. Eng., 2016, 107, 012044. https://doi.org/10.1088/1757-899X/107/1/012044
  4. Thinnakorn K., Tscheikuna J.: Appl. Catal. A-Gen., 2014, 470, 26. https://doi.org/10.1016/j.apcata.2014.02.016
  5. Yoosuk B., Udomsap P., Puttasawat B., Krasae P.: Bioresour. Technol., 2010, 101, 3784. https://doi.org/10.1016/j.biortech.2009.12.114
  6. Hu S., Guan Y., Wang Y., Han, H.: Appl. Energy, 2011, 88, 2685. https://doi.org/10.1016/j.apenergy.2011.02.012
  7. Lu H., Yu X., Yang S. et al.: Fuel, 2015, 165, 1. https://doi.org/10.1016/j.fuel.2015.10.072
  8. Tantirungrotechai J., Thapwatee S., Yoosuk B.: Fuel, 2013, 106, 279. https://doi.org/10.1016/j.fuel.2013.01.028
  9. Theam K., Islam A., Choo Y., Taufiq-Yap Y.: Ind. Crops Prod., 2015, 76, 281. https://doi.org/10.1016/j.indcrop.2015.06.058
  10. Lokman I., Rashid M., Taufiq-Yap YH.: Chinese J. Chem. Eng., 2015, 23, 1857. https://doi.org/10.1016/j.cjche.2015.07.028
  11. Rogers G., Lih M., Hougen O.: Alche J., 1966, 2, 369. https://doi.org/10.1002/aic.690120230
  12. Jang J., Lee H.: Constr. Build. Mater., 2015, 102, 260. https://doi.org/10.1016/j.conbuildmat.2015.10.172
  13. Kurniawan R., Sugiawan Y., Managi S.: J. Cleaner Prod., 2018, 201, 334. https://doi.org/10.1016/j.jclepro.2018.08.051
  14. Tasri A., Susilawati A.: Sustain. Energy Technol. Assessments, 2014, 7, 34. https://doi.org/10.1016/j.seta.2014.02.008
  15. Yao Z., Ji X., Sarker P. et al.: Earth Sci. Rev., 2015, 141, 105. https://doi.org/10.1016/j.earscirev.2014.11.016
  16. Solis L., Alejo L., Kiros Y.: J. Environ. Chem. Eng., 2016, 4, 4870. https://doi.org/10.1016/j.jece.2016.04.006
  17. Liu X., Piao X., Wang Y. et al.: Fuel, 2007, 87, 1076. https://doi.org/10.1016/j.fuel.2007.05.059
  18. Murayama N., Takahashi T., Shuku K. et al.: Int. J. Miner. Process, 2008, 87, 129. https://doi.org/10.1016/j.minpro.2008.03.001
  19. Jain D., Khatri C., Rani A.: Fuel Process. Technol., 2010, 91, 1015. https://doi.org/10.1016/j.fuproc.2010.02.021
  20. Hadiyanto H., Lestari S., Abdullah A. et al.: Int. J. Energy Environ. Eng., 2016, 7, 297. https://doi.org/10.1007/s40095-016-0212-6
  21. Ho W., Ng H., Gan S., Tan S.: Energy Convers. Manag., 2014, 88, 1167. https://doi.org/10.1016/j.enconman.2014.03.061
  22. Volli V., Purkait M.: J. Hazardous Mater., 2015, 297, 101. https://doi.org/10.1016/j.jhazmat.2015.04.066
  23. Van Gerpen J.: Fuel Process. Technol., 2005, 86, 1097. https://doi.org/10.1016/j.fuproc.2004.11.005
  24. Meher L., Sagar D., Naik S.: Renew. Sust. Energy Rev., 2006, 10, 248. https://doi.org/10.1016/j.rser.2004.09.002
  25. Algoufi Y., Hameed B.: Fuel Process. Technol., 2014, 126, 5. https://doi.org/10.1016/j.fuproc.2014.04.004
  26. Musa I.: Egypt J. Petrol., 2016, 25, 21. https://doi.org/10.1016/j.ejpe.2015.06.007
  27. Barnwal B., Sharma M.: Renew. Sust. Energy Rev., 2005, 9, 363. https://doi.org/10.1016/j.rser.2004.05.007
  28. Manique M., Lacerda L., Alves A., Bergmann C.: Fuel, 2017, 190, 268. https://doi.org/10.1016/j.fuel.2016.11.016
  29. Babajide O., Musyoka N., Petrik L., Ameer F: Catal. Today, 2012, 190, 54. https://doi.org/10.1016/j.cattod.2012.04.044
  30. Černoch M., Skopal F., Hájek M.: Eur. J. Lipid Sci. Technol., 2009, 111, 663. https://doi.org/10.1002/ejlt.200800255
  31. Birla A., Singh B., Upadhyay S., SharmaY.: Bioresour. Technol., 2012, 106, 95. https://doi.org/10.1016/j.biortech.2011.11.065
  32. Sirviö K., Heikkilä S., Hiltunen E., Niemi S.: Agron. Res., 2018, 16, 1247. https://agronomy.emu.ee/wp-content/uploads/2018/05/2018_AR_S1.pdf
  33. International Organization for Standardization. ISO 3104, Petroleum products -- Transparent and opaque liquids -- Determination of kinematic viscosity and calculation of dynamic viscosity, 1994.
  34. International Organization for Standardization. ISO 3675, Crude petroleum and liquid petroleum products -- Laboratory determination of density -- Hydrometer method, 1998.
  35. International Organization for Standardization. ISO 7537, Petroleum products -- Determination of acid number -- Semi-micro colour-indicator titration method, 1997.
  36. Yao Z., Ji X., Sarker P. et al.: Earth Sci. Rev., 2015, 141, 105. https://doi.org/10.1016/j.earscirev.2014.11.016
  37. Zhang S., Chen Z., Chen X., Gong X..: Fuel Chem. Technol., 2014, 42, 166. https://doi.org/10.1016/S1872-5813(14)60013-X
  38. Wdowin M., Franus M., Panek R. et al.: Clean Technol. Environ. Policy, 2014, 16, 1217. https://doi.org/10.1007/s10098-014-0719-6
  39. Franus W., Wdowin M., Franus M.: Environ. Monit. Assess., 2014, 186, 5721. https://doi.org/10.1007/s10661-014-3815-5
  40. Nakatani N., Takamori H., Takeda K., Sakugawa H.: Bioresour. Technol., 2009, 100, 1510. https://doi.org/10.1016/j.biortech.2008.09.007
  41. Yu X., Wen Z., Li H. et al.: Fuel, 2011, 90, 68. https://doi.org/10.1016/j.fuel.2010.11.009
  42. Maneerung T., Kawi S., Wang C-H.: Energy Convers. Manag., 2014, 92, 234. https://doi.org/10.1016/j.enconman.2014.12.057
  43. Wong Y., Tan Y., Taufiq-Yap Y., Ramli I.: Sains Malays., 2014, 43, 783. http://www.ukm.my/jsm/english_journals/vol43num5_2014/contentsVol43num5_...
  44. Hayyan A., Alam M., Mirghani M. et al.: Bioresour. Technol., 2010, 101, 4. https://doi.org/10.1016/j.biortech.2010.05.045
  45. Pappas G., Liatsi P., Kartsonakis I. et al.: J. Non-Cryst. Solids, 2008, 354, 755. https://doi.org/10.1016/j.jnoncrysol.2007.09.007
  46. Refaat A.: Int. J. Environ. Sci. Technol., 2011, 8, 203. https://dx.doi.org/10.1007/BF03326210
  47. Patterson A.: Phys. Rev., 1939, 56, 978. https://doi.org/10.1103/PhysRev.56.978
  48. Valverde J., Medina S.: Phys. Chem. Chem. Phys., 2015, 17, 21912. https://doi.org/10.1039/C5CP02715B
  49. Claudia B., Francesco C., Antonio L., Saverio F.: Ultrason. Sonochem., 2011, 18, 661. https://doi.org/10.1016/j.ultsonch.2010.08.011
  50. Ngamcharussrivichai C., Nunthasanti P., Tanachai S., Bunyakiat K.: Fuel Process. Technol., 2010, 91, 1409. https://doi.org/10.1016/j.fuproc.2010.05.014
  51. Teo S., Taufiq-Yap Y., Rashid U., Islam A.: RSC Advances, 2015, 5, 4266. https://doi.org/10.1039/C4RA11936C
  52. Deshmane V., Adewuyi Y.: Fuel, 2013, 107, 474. https://doi.org/10.1016/j.fuel.2012.12.080
  53. Liu X., Piao X., Wang Y., Zhu S.: Energy Fuels, 2008, 221, 313. https://doi.org/10.1021/ef700518h
  54. Kouzu M., Hidaka J-S.: Fuel, 2012, 93, 1. https://doi.org/10.1016/j.fuel.2011.09.015
  55. Mootabadi H., Salamatinia B., Bhatia S., AbdullahA.: Fuel, 2010, 89, 1818. https://doi.org/10.1016/j.fuel.2009.12.023