In the article the chemistry of the noncatalytic oxidative desulfurization process of distillate oil fractions is analyzed. The study involves the characteristics of high-sulfur straight-run diesel fraction of narrow composition (593–623 K) before and after oxidation by air at 453–493 K and a pressure of 3.0 MPa. The composition of sulfur compounds in the raw material fraction was determined. It is shown that straight-run fractions of raw materials may also contain sulfoxides, which are products of oxidation of organosulfur compounds and are formed during storage of petroleum products. On the basis of IR spectroscopic studies of raw materials, oxidized products and model mixtures, the transformation depth of fr. 593–623 K sulfur compounds, which are distributed in the form of sulfones and sulfoxides in solid and liquid oxidation products, and partially remain in the purified fuel, was analyzed in the above-mentioned process.
- Ismagilov Z., Yashnik S., Kerzhentsev M. et al.: Cat. Rev. Sci. Eng., 2011, 53, 199. https://doi.org/10.1080/01614940.2011.596426
- U.S.EPA Regulatory Impact Analysis: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. EPA 420-R-00-026. December 2000.
- Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC.
- Directive 2009/30/EC of the European Parliament and of the Council of 23rd April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC.
- EN 590:2009. Automotive fuels. Diesel. Requirements and test methods.
- [6] https://www.epa.gov/sites/production/files/2015-08/documents/peg.pdf
- [7] https://www.oica.net/wp-content/uploads/2007/06/wwfc-fourth-edition-sep-...
- DSTU 8705:2017. Diesel fuel for long-term storage. Specification.
- DSTU 7688:2015. Diesel fuel EURO. Specification.
- DSTU 4840:2007. Diesel fuel of improved quality. Specification.
- Link D., Baltrus J., Rothenberger K. et al.: Energy Fuels, 2003, 17, 1292. https://doi.org/10.1021/ef0300747
- http://large.stanford.edu/courses/2017/ph240/chhoa1/docs/exxon-2008.pdf
- Huaming L., Lining H., Jidong L. et al.: Energy Fuels, 2009, 23, 1354. https://doi.org/10.1021/ef800797n
- van Rheinberg O., Klaus L., Heinrich K. et al.: Fuel, 2008, 87, 2988. https://doi.org/10.1016/j.fuel.2008.03.020
- Babich I., Moulijn J.: Fuel, 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1
- Banisharif F., Dehghani M., Capel-Sánchez M., Campos-Martin J.: Ind. Eng. Chem. Res., 2017, 56, 3839. https://doi.org/10.1021/acs.iecr.7b00089
- Chen L.-J., Li F.-T.: Pet. Sci. Technol., 2015, 33, 196. https://doi.org/10.1080/10916466.2014.974817
- Julião D., Mirante F. et al.: Fuel, 2019, 241, 616. https://doi.org/10.1016/j.fuel.2018.11.095
- Liu W., Li T., Yu G. et al.: Fuel, 2020, 265, 116967. https://doi.org/10.1016/j.fuel.2019.116967
- Mirante F., Alves A. et al.: Fuel, 2020, 259, 116213. https://doi.org/10.1016/j.fuel.2019.116213
- Jatav S., Srivastava V.: Pet. Sci. Technol., 2019, 37, 633. https://doi.org/10.1080/10916466.2018.1560323
- Wan Mokhtar W., Wan Azelee Wan Abu Bakar et al.: Pet. Sci. Technol., 2018, 36:21, 1741. https://doi.org/10.1080/10916466.2018.1511581
- Wang B., Dai B., Kang L., Zhu M.: Fuel, 2020, 265, 117029. https://doi.org/10.1016/j.fuel.2020.117029
- Tang X.-D., Wang C., Li J.-J. et al.: Pet. Sci. Technol., 2020, 38, 723. https://doi.org/10.1080/10916466.2020.1771365
- Zhao D., H. Ren, Y. Zhao & J. Jia.: Petroleum Science and Technology, 2009, 27:12, 1338. https://doi.org/10.1080/10916460802105682
- Pysh'yev S., Bratychak M., Lazorko O., Shyshchak O.: Pol. J. Environ. Stud., 2005, 14, 123.
- Pysh'yev S., Lazorko О., Bratychak M.: Chem. Chem. Technol., 2009, 3, 77.
- Lazorko О., Pysh'yev S., Bratychak M.: Chem. Chem. Technol., 2008, 2, 309.
- Pysh'yev S., Lazorko О., Bratychak M.: Chem. Chem. Technol., 2009, 3, 163.
- Paniv P., Pysh'yev S., Haivanovych V., Lazorko O.: Chem. Tech. Fuels Oils, 2006, 3, 7.
- Pysh'yev S.: Chem. Chem. Technol., 2012, 6, 229. https://doi.org/10.23939/chcht06.02.229
- Korchak B., Grynyshyn O., Chervinskyy T. et al.: Chem. Chem. Technol., 2020, 14, 129. https://doi.org/10.23939/chcht14.01.129
- Pysh'yev S., Bratychak M.: Chem. Chem. Technol., 2020, 14, 403. https://doi.org/10.23939/chcht14.03.403
- Oae S.: Organic Chemistry of Sulfur. Springer 1977. https://doi.org/10.1007/978-1-4684-2049-4
- Collins F., Lucy A., Sharp Ch.: J. Mol. Catal. A., 1997, 117, 397. https://doi.org/10.1016/S1381-1169(96)00251-8
- Nakanishi K.: Infrared Absorption Spectroscopy - Practical. Holden-Day, Inc., San Francisco 1964.
- Bolshakov G.: Sulfur Reports, 1986, 5, 103. https://doi.org/10.1080/01961772.1986.10878150
- Bolshakov G.: Infrakrasnye Spectry Arenov. Monograph. Nauka, Novosibirsk 1989.
- Bellamy L.: The Infra-Red Spectra of Complex Molecules. Springer, Netherlands 1975. https://doi.org/10.1007/978-94-011-6017-9
- Kazitsina L., Kupletskaya N.: Primenenie UF-, IK-, YMR- i Mass-spektroskopii v Organicheskoi Khimii. Khimia, Moskva 1997.
- Bolshakov G., Glebovskaya E., Kaplan Z.: Spektry i Radiogrammy Heteroorganicheskykh Soedinenii. Khimia, Leningrad 1967.
- Wartewig S.: IR and Raman Spectroscopy Fundamental Processing. Wiley-VCH Verlag GmbH, Weinheim 2003. https://doi.org/10.1002/3527601635
- Karaulova E.: Khimia Neftianykh Sulfidov. Nauka, Moskva 1970.
- Odinokov V., Kukovinets O., Ishmuratov G. et al.: Neftekhimia, 1979, 19, 103.