The development of technology for production of metal-filled hydrogels based on copolymers of 2-hydroxyethyl methacrylate (HEMA) with polyvinylpyrrolidone (PVP) by polymerization with simultaneous chemical reduction of metal ions suggests the grounding and determination of optimal technological parameters for its realization. The diverse influence of the initial polymer-monomer composition (PMС) formula on the main parameters of the exotherm of the copolymerization of HEMA with PVP, which constitute the technological mode of chemical deposition of metals, was experimentally proved. In order to decrease the part of experimental losts, the possibility of use the simplex-lattice planning method to optimize compositional formula based on HEMA/PVP/H2O with the plotting of an adequate model was proved. Optimization was carried out for the main parameters of the exotherm process - the time of gelation start, the region of the gel effect and the maximum temperature of the exotherm. Using the Sheffe simplex-lattice planning method, the planning matrices were constructed, the regression equations are calculated and lines of equal properties values are defined. The obtained regression equations allow analytically establish the relationship of the parameters of exothermic processes with the technological conditions for the reduction of metal ions, as well as with the formula of the polymer-monomer composition. The main advantage of the results obtained is that to build an adequate model, it is necessary to carry out a minimum amount of experimental research, which significantly speeds up the construction of the model and also significantly reduces the cost of its creation. The use of the obtained equations makes it possible to calculate the content of the initial reaction composition, the exothermic effects of the polymerization process of which provide the optimal technological parameters for the reduction of metal ions. The constructed lines of equal values of parameters will significantly reduce the experimental search for composite formula with given parameters of the exotherm of the polymerization process, depending on the nature of the deposited metal.
1. Schexnailder, P., & Schmidt, G. (2009) Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287, 1, 1-11. https://doi.org/10.1007/s00396-008-1949-0
https://doi.org/10.1007/s00396-008-1949-0
2. Nicolais, L., & Carotenuto, G. (2004). Metal-Polymer Nanocomposites. New Jersey: John Wiley & Sons. doi:10.1002/0471695432
https://doi.org/10.1002/0471695432
3. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., & Bajpai, M. (2007). Review on Polymer, Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of Macromolecular Science, Part A, 45, 107-119. https://doi.org/10.1080/10601320701683470
https://doi.org/10.1080/10601320701683470
4. Pokhmurska, A. V., Grytsenko, O. M., Suberlyak, O. V., & Gorbenko, N. Ye. (2019). Thermometric investigations of 2- hydro-xyethylmethacrylate polymerization at the presence of polyvinylpyrrolidone with simultaneous nickel ions reduction. Naukovyy visnyk NLTU Ukrayiny - Scientific Bulletin of UNFU, 29(3), 99-103. [in Ukrainian]. https://doi.org/10.15421/40290321
https://doi.org/10.15421/40290321
5. Koval, Yu. B., Grytsenko, O. M., Suberlyak, O. V., & Voloshkevych, P. P. (2015). Vstanovlennya temperaturnoho rezhymu oderzhannya metalohidroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 812, 372-378. [in Ukrainian].
6. Pokhmurska, A. V., Grytsenko, O.M., Baran, N. M., & Voloshkevych P. P. (2019). Osoblyvosti syntezu ta struktura Ag(0)/pHEMA-pr-PVP nanokompozytiv, oderzhanykh polimeryzatsiyeyu z osadzhennyam metalu. Vcheni zapysky TNU imeni V. I. Vernadskoho, 30 (69), 2, 118-124. [in Ukrainian].
7. Chervakov, O. V., & Andriyanova, M. V. (2016). Matematychne modelyuvannya ta optymizatsiya obyektiv khimichnoyi tekhnolohiyi. Konspekt lektsiy. Dnipropetrovsk: DVNZ UDKHTU. [in Ukrainian].
8. Brayilo, M. V., Buketov, A. V., Kobelnyk, O. S., Yakushchenko, S. V., Sapronova, A. V., Sapronov, O. O., et al. (2018). Optymizatsiya vmistu dobavok u epoksy-poliefirnomu zvyazuvachi dlya pidvyshchennya koheziynoyi mitsnosti kompozytiv. Naukovyy visnyk NLTU Ukrayiny - Scientific Bulletin of UNFU, 28, 11, 71-77. [in Ukrainian].
https://doi.org/10.15421/40281114
9. Boyko, T. V., Skladannyy, D. M., & Potapenko, T. Ye. (2017). Modelyuvannya i optymizatsiya protsesu tsementatsiyi rtuti v umovakh statystychnoyi nevyznachenosti. Visnyk Vinnytskoho politekhnichnoho instytutu, 6, 21-25. [in Ukrainian].
10. Trishchenkova, A. V., Gordiyenko, M. G., Timoshenko, K. A., & Shmykova. O. V. (2014). Issledovaniye i optimizatsiya stadii sushki pri poluchenii sukhikh ekstraktov iz bakterialnoy biomassy. Uspekhi v khimii i khimicheskoy tekhnologii, 28, 1, 57-59. [in Russian].
11. Grytsenko, O. M., Klym, Yu. O., & Skoro-khoda, V. Y. (1999). Optymizatsiya kompozytsiynykh skladiv elastoheliv. Visnyk DU "Lvivska politekhnika", 361, 7-40 [in Ukrainian].
12. Suberlyak, O. V., Krasinskyi, V. V., Shapoval, I. M., & Grytsenko, О. M. (2011). Influence of the mechanism and parameters of hardening of modified novolac phenol-formaldehyde resins on the physicomechanical properties of the composite. Materials Science, 46, 5, 669-678. https://doi.org/10.1007/s11003-011-9339-z
https://doi.org/10.1007/s11003-011-9339-z
13. Baran, N. M., Krasinskyy, V. V., Zemke, V. M., Grytsenko, O. M., & Burcha, T. M. (2012). Prohnozuvannya vlastyvostey modyfikovanykh polia-midnykh membran iz zastosuvannyam matematychnoho modelyuvannya skladu polimernoyi sumishi. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 726, 437-443. [in Ukrainian].
14. Berezyuk, O. Ya. (2009). Rozrobka ta optymizatsiya skladiv past na osnovi mineralʹnykh rechovyn dlya vyvedennya maslyanykh plyam z bavovnyanykh tkanyn. Visnyk Khmelnytskoho natsionalnoho universytetu, 1, 160-162 [in Ukrainian].
15. Bogdanova, V. V., Kobets, O. I., Lyudko, A. A., & Kirlitsa, V. P. (2012). Optimizatsiya ognezashchitno-ognetushashchikh svoystv sostava dlya predo-tvrashcheniya i lokalizatsii pozharov v prirodnom komplekse metodom matematicheskogo planirovaniya eksperimenta. Vestnik Komandno-inzhenernogo instituta MCHS Respubliki Belarus, 1 (15), 32-39 [in Russian].
16. Akhnazarova, S. L., & Kafarov, V. V. (1985). Metody optimizatsii eksperimenta v khimicheskoy tekhnologii. Moskva: Vysshaya shkola [in Russian].
17. Afonin, Yu. S., & Dubrovin, V. I. (2004). Simulation of compositions by the method of simplex lattices. Radioelektronika. Informatyka. Upravlinnya, 2, 60-63 [in Russian].
18. Akhmetzhanov, A. M., Urbanov, A. V., & Potapova, Ye. N. (2016). Primeneniye metodov planirovaniya eksperimenta pri izuchenii kompleksnogo vliyaniya dobavok na svoystva vyazhuchego. Uspekhi v khimii i khimicheskoy tekhnologii, 30, 7, 14-16 [in Russian].
19. Korolev, G. V., Pavlov, B. V., & Berlin, A. A. (1959). Termometriya kak metod izucheniya kinetiki polimerizatsii. Vysokomolekulyarnyye soyedineniya - Polymer Science, 1, 9, 1396-1402. [in Russian].
20. Grytsenko, O. M., Suberlyak, O. V., Moravsʹkyy, V. S., & Gayduk, A. V. (2016). Doslidzhennya kinetychnykh zakonomirnostey khimichnoho osadzhennya nikelyu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy - Eastern-European Journal of Enterprise Technologies, 1/6(79), 26-31. [in Ukrainian]. https://doi.org/10.15587/1729-4061.2016.59506
https://doi.org/10.15587/1729-4061.2016.59506
21. Nikolayev, A. F. (1974). Sinteticheskiye polimery i plasticheskiye massy na ikh osnove. Moskva: Khimiya. [in Russian].