SYNTHESIS AND PROPERTIES OF 4-AMINO-2-METHYL-PYRIMIDINE-5-IL-METHYL ESTERS OF AROMATIC THIOSULFOACIDS

2019;
: 122-128
1
Department of Technology of Biologically Active Substances, Pharmacy & Biotechnology, Lviv National Polytechnic University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Derivatives of pyrimidine are the object of interest to researchers working in the field of medical chemistry. However, despite the rich history of searching for potential biologically active agents among substances containing this heterocyclic fragment, their potential is still unused. There are vitamins, vasodilators, antidiabetic, antibacterial, antimalarial substances among the derivatives of pyrimidine. A special group among the biologically active compounds is sulfurcontaining derivatives of pyrimidine (sulfides, salts of sulfonic acids, sulfonamides, sulfenamides, disulfides). These compounds are characterized as plant growth regulators, herbicides, insecticides and acaricides, fungicides, bactericides, and herbicide antidotes, and others. Some sulfur-containing pyrimidine derivatives are active substances in medical preparations. In addition, pyrimidine derivatives are intermediates for the synthesis of many active phosphororganic insecticides and derivatives of urea and carbamate acid.

Taking into account the wide range of biological effects of esters of thiosulphonic acid and their high reactivity, it is possible to modify the structure of the heterocyclic pyrimidine framework by thiosulfonate fragments and then construct target physiologically active molecules.

The production of esters of thiosulfonic acid with a pyrimidine moiety is complicated by the lack of data on the synthesis of chlorohydrid sulfonic acid of pyrimidine as a key raw material for the synthesis of esters of thiosulfonic acid.

The ways of synthesis of esters of thiosulfoacids with a pyrimidine moiety have been studied. The method for the preparation of esters of thiosulfoacids by chlorosulfurisation of the basic structures with the further preparation of the corresponding salts of pyridine-containing thiosulfonic acids and esters of thiosulfoacids based on them is not suitable for the studied pyrimidines (2-amino-6-methylpyrimidine-4-ol, 5- bromomethyl-2-methylpyrimidine-4-amine).

The result of further study was a new approach to the synthesis of promising nitrogen-containing heterocyclic esters of thiosulfoacid by the heterolitication of salts of aromatic and heterocyclic thiosulfonic acids. The possibility of obtaining of esters of thiosulfoacid with the pyrimidine moiety from the side of thiol sulfur by the alkylation of potassium or sodium salts of aromatic thiosulfonic acid with 5-bromomethyl-2-methylpyrimidine-4-amine in an acetone-aqueous medium at room temperature have been shown. The alkylation lasted 7-10 days, and the yield of the target esters of thiosulfoacids (29-57%) depended on the reactivity of the reagents. For the prevention of adverse reactions (formation of thiosulfonic acids and their decomposition), 5-bromomethyl-2-methylpyrimidin-4-amine was transferred into the corresponding base. The reagent was selected depending on the purity of the final product.

1. Cesar Mendoza-Martínez, Norma Galindo-Sevilla, José Correa-Basurto, Victor Manuel, Ugalde-Saldivar, Rosa Georgina Rodríguez-Delgado, Jessica Hernández-Pineda, Cecilia Padierna-Mota, Marcos Flores-Alamo, Francisco Hernández-Luis. (2015) Antileishmanial activity of quinazoline derivatives: Synthesis, docking screens, molecular dynamic simulations and electrochemical studies European Journal of Medicinal Chemistry. 92, 314-331 10.1016/j.ejmech.2014.12.051
https://doi.org/10.1016/j.ejmech.2014.12.051
2. O. D. Pietro, E. Vicente-García, M. C. Taylor, D. Berenguer, E. Viayna, A. Lanzoni, I. Sola, H. Sayago, C. Riera, R. Fisa, M. V. Clos, B. Pérez, J. M. Kelly, R. Lavilla, D. Muñoz-Torrero (2015). Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofusedquinolines with multi-trypanosomatid activity. European Journal of Medicinal Chemistry. 105, 120-137 https://doi.org/10.1016/j.ejmech.2015.10.007
https://doi.org/10.1016/j.ejmech.2015.10.007
3. A. Kumar, P. Sharma, P. Kumari, B. L. Kalal (2011). Exploration of antimicrobial and antioxidant potential of newly synthesized 2,3-disubstituted quinazoline-4(3H)-ones. Bioorganic & Medicinal Chemistry Letters. 21( 14), 4353-4357 10.1016/j.bmcl.2011.05.031
https://doi.org/10.1016/j.bmcl.2011.05.031
4. R. Rohini, P. M. Reddy, K. Shanker, A. Hu, V. Ravinder. (2010) Antimicrobial study of newly synthesized 6-substituted indolo[1,2-c]quinazolines. European Journal of Medicinal Chemistry. 45(3), 1200-1205 https://doi.org/: 10.1016/j.ejmech.2009.11.038
https://doi.org/10.1016/j.ejmech.2009.11.038
5. J. C. Coa, W. Castrillón, W. Cardona, M. Carda, V. Ospina, J. A. Muñoz, I. D. Vélez, S. M. Robledo (2015). Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. European Journal of Medicinal Chemistry. 101. 746-753 https://doi.org/10.1016/j.ejmech.2015.07.018
https://doi.org/10.1016/j.ejmech.2015.07.018
6. L. Zhang, Y. Yang, H. Zhou, Q. Zheng, Y. Li, S. Zheng, S. Zhao, D. Chen, Ch.Fan. (2015) Structure-activity study of quinazoline derivatives leading to the discovery of potent EGFR-T790M inhibitors. European Journal of Medicinal Chemistry.102 445-463 DOI: 10.1016/j.ejmech.2015.08.026 ·
https://doi.org/10.1016/j.ejmech.2015.08.026
7. Siyuan Yin, Liliang Zhou, Jinsheng Lin, Lingjing Xue, Can Zhang.(2015) Design, synthesis and biological activities of novel oxazolo[4,5-g]quinazolin-2(1H)-one derivatives as EGFR inhibitors. European Journal of Medicinal Chemistry.101.462-475 DOI:10.1016/j.ejmech.2015.07.008
https://doi.org/10.1016/j.ejmech.2015.07.008
8. A. M. Alanazi, A. A.-M. Abdel-Aziz, I. A. Al-Suwaidan, S. G. Abdel-Hamide, T. Z. Shawer, A. S. El-Azab (2014) Design, synthesis and biological evaluation of some novel substituted quinazolines as antitumor agents. European Journal of Medicinal Chemistry. 79, 446-454 DOI: 10.1016/j.ejmech.2014.04.029
https://doi.org/10.1016/j.ejmech.2014.04.029
9. Носуленко І. С. 2015 "Синтез, фізико-хімічні та біологічні властивості 2-[(3-R-2-оксо-2н-[1,2,4]триазино[2,3-C]хіназолін-6-іл)тіо]оцтових кислот та їх похідних" дис. ... канд. фарм. наук. Львів, 20185.267. http://dspace.zsmu.edu.ua/handle/123456789/3336
10. Dianova L. N., Koksharova T. G., Volkova N. V. [et al.]. 1992. Synthesis and Biological Activity of [7-Amino-S-Triazole[1,5-c]Pyrimidyl-5]-Thioacetic Acid Derivatives. Pharmaceutical Chemistry Journal. 26. ( 2), 134-137.
11. Dianova L. N., Koksharova T. G., Volkova N. V. [et al.] 1992. Synthesis and Biological Activity of [7-Amino-S-Triazole[1,5-c]Pyrimidyl-5]-Thioacetic Acid Derivatives. Pharmaceutical Chemistry Journal. 26. ( 2). 134-137.
12. Chern J., Tao P., Yen M. [et al.] 1993. Studies on Quinazolines. 5. 2,3-Dihydroimidazo[1,2-c]quinazoline Deri-vatives: A Novel Class of Potent and Selective α1-Adrenoceptor Antagonists and Antihypertensive Agents Journal of Medicinal Chemistry. 36. ( 15). 2196-2207.
https://doi.org/10.1021/jm00067a017
13. Мельников Н. Н. 1987 Пестициди.Химия, технология и применение. Москва: Химия,. 712.
14. Машковский М. Д. Лекарственные средства / М. Д. Машковський. 16-е издание, перераб. и дополн. М.: Новая волна издатель Умеренков, 2010. 1216 с.