PROSPECTS FOR PRODUCTION OF HEAT INSULATION AERATED CONCRETE BASED ON CMPOSITE BINDERS

2019;
: 146-153
1
Lviv Polytechnic National University, Department of building production
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, Department of construction production
4
Lviv polytechnic National University

It is shown that solving the problem of energy saving of housing and public objects use is possible due to the growth of production and use of aerated concrete as an effective insulation material, which ensures the implementation of the concept of sustainable development of Ukraine. Analysis of the data of the Ukrainian Autoclaved Aerated Concrete Producers Association has shown that the demand for aerated concrete constantly increases, and the growth of its production is about 40–45 %. It has been established that one of the most pressing problems of the technology of thermal insulation and constructional and thermal insulation of aerated concrete is to reduce their average density while providing the necessary strength values and other operational properties. This requires the design of optimal composition of aerated concrete mix for non-autoclaved aerated concrete, technological parameters of their production. It has been established that binders for non-autoclaved aerated concrete should be characterized by high activity, rapid strength development, resistance to physical and environmental influences, non-deficit and cheap ingredients of aerated concrete. Modern production is oriented on the production of effective materials using technologies that would provide minimum consumption of raw materials, energy, and the use of secondary resources. Gypsum binders of β-modification occupy a special place in this category of building materials due to low energy intensity and wide prevalence of raw materials.

The choice of compositions of non-autoclaved aerated concretes have been argumentated, which provides creation of optimum microstructure of the material, reduction of macroporosity and increase of crack resistance, strengthening of contact zones of cement paste and fillers due to the directed application of effective chemical modifiers and high-quality raw materials, the use of highly dispersed silicon containing materials with high hydraulic activity.

1. Sanytsky M. A., Poznyak O. R., Marushchak U. D. (2013). Enerhozberihayuchi tekhnolohiyi v budivnytstvi: navch. posibnyk, 2013. – 236 р. [in Ukrainian].

2. Soltysik R. A., Marushchak U. D., Poznyak O. R., Duma V. O. (2018) Aspekty staloho rozvytku v budivnytstvi, Stalyy rozvytok – stan ta perspektyvy: materialy mizhnarodnoho naukovoho sympoziumu SDEV'2018, pp. 92–93. [in Ukrainian].

3. Obsyahy suchasnoho vyrobnytstva i spozhyvannya hazobetonu. [Elektronnyy resurs]. – Rezhym dostupu: https://pp-budpostach. com. ua/a255738-obsyagi-suchasnogo-virobnitstva. html. [in Ukrainian].

4. Tomilin K. V., Storchay N. S. (2006) Yacheistyy beton – perspektivy razvitiya, Beton i zhelezobeton v Ukraine, No. 3, Р. 2–3. [in Russian].

5. Chervyakov Yu. M. (2008) Nízdryuvatiy beton – yefektivniy stínoviy materíal, Stroitel'nyye materialy i izdeliya. – No. 6. – S. 35–37. [in Ukrainian]. 6. E. Namsone, G. Šahmenko, A. Korjakins (2017) Durability Properties of High Performance Foamed Concrete, Procedia Engineering, No. 172, P. 760 –767.

7. Elektronnyy resurs. – Rezhym dostupu: https://gazobeton.org. [in Ukrainian].

8. Zh. A. Abdyraymov, S. Zh. Melibayev (2013) Uluchsheniye svoystv gazobetonnykh smesey i neavtoklavnogo gazobetona vedeniyem razlichnykh dobavok, Vestnik KGUSTA, No. 3, P. 119–123. [in Russian].

9. V. A. Lotov, N. A. Mitina (2009) Vliyaniniye dobavok na fazovyy sostav gazobetonnoy smesi v protsesse yeye tverdeniya, Materialy nauchno–prakt. konferentsii “Khimiya i khimicheskaya tekhnologiya na rubezhe tysyachiletey”, T. 1, P. 98–100. [in Russian].

10. Pozniak O. R., Melnyk V. M.,Zavadskiy Í. O., Melynyk A. Ya. (2017) Vyrobnytstvo, vlastivostí í zastosuvannia gazobetonu neavtoklavnogo tverdnennia, Vísnyk Natsíonalnogo uníversitetu “Lvívska polítekhníka”. “Teoríya í praktika budívnitstva”, No. 877, P. 160–166. [in Ukrainian].

11. R. F. Runova, V. Í. Gots, O. G. Gelevera, O. P. Konstantinovskiy, Yu. L. Nosovskiy, V. V. Pípa (2017) Osnovy vyrobnytstva stínovykh ta ozdoblyuvalnykh materíalív, 528 s. [in Ukrainian].

12. Poznyak O., Sanytsky M., Zavadsky I., Braichenko S., Melnyk A. (2018) Research into structure formation and properties of the fiber-reinforced aerated concrete obtained by the non-autoclaved hardening // Eastern-European Journal of Enterprise Technologies, No. 3/6 (93), P. 39–46.

13. Ya. B. Yakymechko, M. A. Sanytskyy (2012) Vapnyano-hipsovi vyazhuchi z pokrashchenymy ekspluatatsiynymy kharakterystykamy, Budivelni materialy ta vyroby, No. 5 (76), P. 4–8. [in Ukrainian].

14. V. M. Selyvanov, A. D. Shyltsyna, A. Y. Hnyrya (2000) Sukhyehazobetonnye smesy na osnove vtorychnoho syrʹya y otkhodov promyshlennosty, Stroytelnye materialy, No. 9, P. 10–11. [in Russian].

15. Amran Y. H. M., Farzadnia N., Abang Ali A. A. (2015) Properties and applications of foamed concrete; a review, Construction and Building Materials, Vol. 101, Part 1, P. 990–1005.

16. Martynov V. and oth. (2015) Influence of the Structure of a Material Solid Phase on the Properties of Cellular Concrete, National Journal of Composite Materials, No. 4. Vol. 5, Р. 79−80.

17. Yakymechko Ya. B. (2006) Nekotorye osobennosty yspolzovanyya nehashenoy yzvesty v yacheystykh betonakh, Stroytelnye materyaly, No. 6, P. 26–27. [in Russian].

18. Yakymechko Ya. B., Voloshynets V. A.(2012) Kinetychni parametry hidratatsiyi CaO v rozchynakh elektrolitiv, Tekhnolohiyi ta dyzayn: elektronne fakhove vydannya, No. 1 (2), 11 p. – Rezhym dostupu do zhurn.: http://www. nbuv. gov. ua/ejournals/td/2012_1/2012-1. html. [in Ukrainian].

19. Pozniak O. Melnyk А. (2014) Non-autoclave aerated concrete from modified binders composition containing supplementary cementitious materials, Budownictwo I architektura. Politechnika Lubelska, Vol. 13(2), P.127–134. 20. Troyan V. V. (2010) Dobavky dlya betoniv i budivelnykh rozchyniv, 2010, 228 p. [in Ukrainian].

21. Dvorkin L. Y.,Lushnikova N. V., Runova R. F., Troyan V. V. (2007) Metakaolin v budivelnykh rozchynakh i betonakh, 2007, 216 p.

22. Zulkarnain F., Ramli M. (2011) Durability of Performance Foamed Concrete Mix Design with Silica Fume for Housing Development, Journal of Material Sciences and Engineering, P. 518–527.

23. Ganina Ye. A., Zakrevskaya L. V. (2015) Kompozitsionnoye gipsovoye vyazhushcheye s primeneniyem nanostrukturi-rovannogo kremnezemistogo komponenta (2015) Aktualnyye problemy arkhitektury,
stroitelstva i dizayna: Materialy Yezhegodnoy mezhdunarodnoy studencheskoy nauchnoy konferentsii instituta stroitel'stva, arkhitektury i iskusstva, P. 121–124. [in Russian]. 24. Serdyuk V. R., Míshchenko O. O. (2011) Míneralní ta khímíchní dobavki v tekhnologíí gazobetonív, Stroitelnyye materialy, izdeliya i sanitarnaya tekhnika, No. 39, P. 141–146. [in Ukrainian].