Intelligent System for Detecting Plagiarism in Technical Texts

2023;
: pp. 235 - 247
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University, Information Systems and Networks Department

The authors of the article developed a scientific reasoning, designed, and developed an intelligent system for detecting plagiarism in technical texts. The work defines the problem of plagiarism in the modern world and its relevance and analyzes the latest research and publications devoted to the latest methods of using intelligent information technologies to detect plagiarism. The need and expediency of developing and improving intellectual information technologies for detecting plagiarism, as well as the use of various methods of identifying matches in texts for the further development of such technologies, are substantiated. The authors developed a general algorithm for detecting plagiarism in technical texts based on the vector comparison method. The practical result of the study is the development of an intelligent system for detecting plagiarism in technical texts and confirmation of its efficiency by applying it to specific examples of technical texts.

  1. Todorova  N. Yu. Fighting Plagiarism: Cultural Patterns and Pedagogical Implications in the EAP/ESP Context. Academia.edu. Platform for academics to share research papers. URL: https://www.academia.edu/1459171/Fighting_Plagiarism_Cultural_Patterns_and_Pedagogical_Implications_in_the_ EAP_ESP_Context
  2. Academic dishonesty – cheating and plagiarism in Ukrainian higher education. OECD Reviews of Integrity in Education: Ukraine 2017. URL: http://www.keepeek.com/DigitalAsset-Management/oecd/education/oecd-reviews- of-integrity-in-education-ukraine-2017/academic-dishonestycheating-and-plagiarism-in-ukrainian-higher- education_9789264270664-13-en#page1
  3. Academic Culture of Ukrainian Students: Key Factors of Formation and Development. East Ukrainian Foundation of Social Research. URL: http://fond.sociology.kharkov.ua/images/docs/academ_cult/material.pdf
  4. Sánchez-Vega F., Villatoro-Tello E., Montes-y-Gómez M., Rosso P., Stamatatos E., Villaseñor-Pineda L. (2019) Paraphrase plagiarism identification with character-level features. Pattern Anal Appl 22(2): 669–681. DOI: 10.1007/s10044-017-0674-z
  5. Sanchez-Perez M., Sidorov G. and Gelbukh A. (2014). A winning approach to text alignment for text reuse detection at PAN 2014– notebook for PAN at CLE”, In: Cappellato L., Ferro N., Halvey M., Kraaij W. (eds) CLEF 2014 evaluation labs and workshop-working notes papers, 15–18 September, CEUR-WS.org, Shefeld, UK, 1004– 1011.
  6. Roostaee M., Fakhrahmad S. M., Sadreddini M. H. (2020). Cross-language text alignment: A proposed two- level matching scheme for plagiarism detection. Expert Syst Appl 160:113718. DOI: 10.1016/j.eswa.2020.113718
  7. Ahuja L., Gupta V., Kumar R. (2020). A new hybrid technique for detection of plagiarism from text documents. Arab. J. Sci. Eng. 45(12):9939–9952. DOI: 10.1007/s13369-020-04565-9
  8. Gharavi E., Veisi H., Rosso P. (2020). Scalable and language-independent embedding-based approach for plagiarism detection considering obfuscation type: no training phase. Neural Comput Appl 32(14):10593–10607. DOI: 10.1007/s00521-019-04594-y
  9. Altheneyan A. S., Menai M. E. B. (2020). Automatic plagiarism detection in obfuscated text. Pattern Anal. Appl. 23(4):1627–1650. DOI: 10.1007/s10044-020-00882-9
  10. Van Son N., Huong L. T., Thanh N. C. (2021). A two-phase plagiarism detection system based on multi- layer lstm networks. IAES Int. J. Artif. Intel. 10(3):636–648. DOI: 10.11591/ijai.v10.i3.pp636-648
  11. Fowler Martin (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison- Wesley Professional.
  12. Hlybovets M. M., Hlybovets A. M., Polyakov M. V. (2014). Intelligent Networks. Dnipropetrovsk: Nova Ideolohiya. 462 p.
  13. Rubin D. and Bernard P. (2005). UML 2.0 in a Nutshell, O'Reilly Media.
  14. Kvetny R. N., Bohach I. V., Boyko O. R., Sofina O. Yu., Shushura O. M. (2012). Computer Modeling of Systems and Processes. Computation Methods. Part 1: educational guide/ edited by R. N. Kvetny. innytsia: VNTU. 193 p.
  15. Lytvyn V. V., Shakhovska N. B. Information Systems Design. Lviv: Magnolia-2006. 380 p.
  16. Katrenko A. V. (2001). Application of Design Technologies and Tools for Information Systems. Bulletin of Lviv Polytechnic National University, No. 438 : Information Systems and Networks, 48–63. Bibliography: 8 references.
  17. Berlinck R. G. S. (2011). The academic plagiarism and its punishments – a review. Brazilian Journal of Pharmacognosy, Vol. 21(3), 365–372. DOI: 10.1590/S0102-695X2011005000099
  18. Petrenko V. S. (2013). Concepts and Types of Plagiarism.  Journal of Civil Law, Vol. 14.  128–131.
  19. Mutiara A. B. and Agustina S. (2008). Anti Plagiarism Application with Algorithm Karp-Rabin at Thesis in Gunadarma University , arXiv Prepr. DOI: 10.13140/RG.2.1.3138.2802
  20. Hunt, E., Janamsetty, R., Kinares, C., Koh, C., Sanchez, A., Zhan, F., ... & Oh, P. (2019, November). Machine learning models for paraphrase identification and its applications on plagiarism detection. In 2019 IEEE International Conference on Big Knowledge (ICBK), 97–104. IEEE. DOI: 10.1109/ICBK.2019.00021
  21. Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015, June). From word embeddings to document distances. In International conference on machine learning,  957–966. PMLR.
  22. Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems, 67, 431–438. DOI: 10.1016/j.ijepes.2014.12.036