Using Big Data for the Construction of an Intelligent Region

2023;
: pp. 281 - 296
1
Uzhhorod National University
2
Uzhhorod National University

The modern world is characterized by a growth in the amount of data generated and collected. “Big data” provides opportunities for improving life and efficiency in various spheres. Creating smart cities where technology enhances the quality of life and service efficiency is an important direction in the use of big data. However, the use of digitization should not only concern places with a high population density. The answer to the challenge of digitizing populated areas of small size but relatively high population density is the creation of an intelligent region. The current technological environment is changing approaches to the management and development of regions. This is especially true for places with complex geography, a multinational community, and diverse economic sectors, such as Transcarpathia. This article explores the possibility of creating an intelligent region in Transcarpathia using modern methods of big data processing.

  1. iang D., The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun., 150 (2020), 158–166. https://doi.org/10.1016/j.comcom.2019.10.035
  2. Javed A.R., Shahzad F., ur Rehman S., Zikria Y.B., Razzak I., Jalil Z., Xu G., Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities, 129 (2022), Article 103794. https://doi.org/10.1016/j.cities.2022.103794.
  3. Silva B. N., Khan M., Jung C., Seo J., Muhammad D., Han J., Yoon Y., Han K., Urban planning and smart city decision management empowered by real-time data processing using big data analytics. Sensors, 18 (9) (2018), p. 2994. https://doi.org/10.3390/s18092994
  4. Machine  Learning  for  Data  Streams:   with   Practical   Examples   in   MOA   /   by   Bifet,   A., Read,     J.,     Žliobaitė,     I.,     Pfahringer,     B.,     &     Holmes,     G.,     published     in     2018,          125–128.https://mitpress.mit.edu/9780262037792/
  5. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. https://doi.org/10.1080/10630732.2014.942092.
  6. V. Albino, U. Berardi, R.M. Dangelico, Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22 (1) (2015),  3–21. 10.1016/j.ins.2014.01.015.
  7. S. Allwinkle, P. Cruickshank, Creating smart-er cities: An overview. Journal of Urban Technology, 18 (2) (2011),  1–16 https://doi.org/10.1080/10630732.2011.601103.
  8. S. Ben Letaifa, How to strategize smart cities: Revealing the SMART model. Journal of Business Research, 68 (7) (2015),  1414–14. https://doi.org/10.1016/j.jbusres.2015.01.024.
  9. L. Anthopoulos, Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities (London, England), 63 (2017), 128–148. https://doi.org/10.1016/j.cities.2016.10.005.
  10. A. Camero, E. Alba. Smart city and information technology: A review. Cities (London, England), 93 (2019),  84–94. https://doi.org/10.1016/j.cities.2019.04.014.
  11. G. Dall'O’, E. Bruni, A. Panza, L. Sarto, F. Khayatian, “Evaluation of cities’ smartness by means of indicators for small and medium cities and communities: A methodology for Northern Italy”. Sustainable Cities and Society, 34 (2017), 193–202. DOI: 10.1016/j.scs.2017.06.021.
  12. M. Duygan, M. Fischer, R. Pärli, K. Ingold, “Where do smart cities grow? The spatial and socio-economic configurations of smart city development”. Sustainable Cities and Society (2021), DOI: 10.1016/j.scs.2021.103578.
  13. Farhan, A. R., & Lim, S. (2019). Mountainous topography and the resilience of cities: A case study. International Journal of Disaster Risk Reduction, 33, 221–234. DOI: 10.1016/j.ijdrr.2018.04.030.
  14. Halás, M., Klapka, P., & Bleha, B. (2014). Regional differentiation of selected conditions for development of human and social capital in the regions of the Visegrad Group plus countries. Moravian Geographical Reports, 22(2), 22–32. DOI:10.2478/mgr-2014-0012.
  15. Kerekes, S., Kindler, E., & Piskóti, I. (2008). Environmental Co-operation in the Carpathians: Challenges and Responses. International Journal of Sustainable Development & World Ecology, 15(1), 53–65. DOI: 10.3843/SusDev.15.1:6.
  16. Acuto, M. 2013. “City Leadership in Global Governance”. Global Governance: a Review of Multilateralism and International Organizations, 19 (3): 481–498. DOI: 10.1163/19426720-01903008
  17. Bihun, Y. (2020). Climate change impact on the environment of the Transcarpathian region (Ukraine). Geologija. Geografija, 6(2), 66–78. DOI:10.13140/RG.2.2.31424.35841.
  18. Komornicki, T., & Śleszyński, P. (2016). The EU and its eastern partners: conditionality and expected benefits. Europa XXI, 30, 7–28. DOI:10.7163/Eu21.2016.30.1.
  19. Acuto, M., S. Parnell, and K. C. Seto. 2018. “Building a Global Urban Science”. Nature Sustainability, 1 (1): 2. DOI: 10.1038/s41893-017-0013-9.
  20. S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas. Data preprocessing for supervised learning. International Journal of Computer Science, 1 (2) (2006),  111–117. 10.1080/02331931003692557
  21. M. J. McDonnell, I. MacGregor-Fors. The ecological future of cities. Science, 352 (6288) (2016), 936– 938, 10.1126/science.aaf3630
  22. K. Mori, A. Christodoulou. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental Impact Assessment Review, 32 (1) (2012), pp. 94–106. 10.1016/j.eiar.2011.06.001
  23. D. Jaeger, R. Jung (Eds.), Encyclopedia of computational neuroscience, Springer, New York, NY (2013), 1–5. 10.1007/978-1-4614-7320-6_708-1
  24. P. McManus. Measuring urban sustainability: The potential and pitfalls of city rankings. Australian Geographer, 43 (4) (2012),  411–424. 10.1080/00049182.2012.731301
  25. H. Ichikawa, N. Yamato, P. Dustan. Competitiveness of global cities from the perspective of the global power city index. Procedia Engineering, 198 (September 2016) (2017),  736–742. 10.1016/j.proeng.2017.07.125
  26. F. Husson, S. Lê, J. Pagès. Exploratory multivariate analysis by example using R. Chapman & Hall/CRC computer science & data analysis, Vol. 40 (2010). 10.1080/02664763.2012.657409
  27. I. Koch. Analysis of multivariate and high-dimensional data. Cambridge University Press (2013). 10.1017/CBO9781139025805
  28. S. Hughes, E. K. Chu, S.G. Mason (Eds.), Climate change in cities: Innovations in multi-level governance, Springer International Publishing, Cham (2018),  1–15. 10.1007/978-3-319-65003-6_1
  29. G. Munda, Social multi-criteria evaluation for urban sustainability policies. Land Use Policy, 23 (1) (2006), 86–94. 10.1016/j.landusepol.2004.08.012
  30. T. Nam, T. A. Pardo. Conceptualizing smart city with dimensions of technology, people, and institutions. Proceedings of the 12th annual international digital government research conference: Digital government innovation in challenging times, ACM, New York, NY (2011),  282–291.10.1145/2037556.2037602
  31. Handbook on constructing composite indicators: Methodology and user guide. European Commission Joint Research Center, Paris (2008). 10.1787/9789264043466-en
  32. S. Lê, J. Josse, F. Husson. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25 (1) (2008), 1–18. 10.1016/j.envint.2008.06.007
  33. A. L. Mayer. Strengths and weaknesses of common sustainability indices for multidimensional systems. Environment International, 34 (2) (2008), 277–291. 10.1016/j.envint.2007.09.004
  34. M. E. Kahn. Green cities: Urban growth and the environment, (2006), 10.1111/j.1467- 9787.2006.00531_8.x
  35. C. Jacinto, C. G. Soares. The added value of the new ESAW/Eurostat variables in accident analysis in the mining and quarrying industry. Journal of Safety Research, 39 (6) (2008), 631–644. 10.1016/j.jsr.;1; 2008.10.009
  36. I. T. Jolliffe, J. Cadima. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065) (2016), p. 20150202. 10.1098/rsta.2015.0202
  37. Global Power City Index 2016. Institute for Urban Strategies, 74 (4) (2016), A28–A29. 10.1002/ana.24042
  38. H. F. Kaiser. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20 (1) (1960),  141–151. 10.1177/001316446002000116
  39. J. V. Meijering, K. Kern, H. Tobi. Identifying the methodological characteristics of European green city rankings. Ecological Indicators, 43 (2014),  132–142. 10.1016/j.ecolind.2014.02.026
  40. Kucharczyk H., Kucharczyk M., Stanislawek K., Fedor P. (2012). Application of PCA in taxonomy research. Principal component analysis – Multidisciplinary applications (2012). 10.5772/711
  41. B. Lindström, B. Eriksson. Quality of life among children in the Nordic countries. Quality of Life Research, 2 (1) (1993),  23–32. 10.1007/BF00642886
  42. K. Kouser, P. G. Lavanya, L. Rangarajan, K. Acharya Kshitish. Effective feature selection for classification of promoter sequences. PLOS ONE, 11 (12) (2016), 1–20. 10.1371/journal.pone.0167165
  43. X. A. Li, G. O. Yeh. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 19 (8) (1998), 1501–1518. 10.1080/014311698215315
  44. M. L. Marsal-Llacuna, J. Colomer-Llinàs, J. Meléndez-Frigola. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technological Forecasting and Social Change, 90 (PB) (2015),  611–622. 10.1016/j.techfore.2014.01.012
  45. Y. A. Phillis, V. S. Kouikoglou, C. Verdugo. Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64 (2017),  254–265. 10.1016/j.compenvurbsys.2017.03.002
  46. Organisation for Economic Co-Operation and Development and China Development Research Foundation, 2010. Organisation for Economic Co-Operation and Development, China Development Research Foundation. Trends in urbanisation and urban policies in OECD Countries: What lessons for China? (2010), p. 219, 10.1787/9789264092259-en
  47. T. Metsalu, J. Vilo. ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43 (W1) (2015),  W566–W570, 10.1093/nar/gkv468
  48. G. Munda. Social multi-criteria evaluation: Methodological foundations and operational consequences. European Journal of Operational Research, 158 (3) (2004),  662–677. 10.1016/S0377-2217(03)00369-2
  49. M. Saisana, A. Saltelli. Rankings and ratings: Instructions for use. Hague Journal on the Rule of Law, 3 (2) (2011),  247–268. 10.1017/S1876404511200058
  50. C. Serbanica, D. L. Constantin. Sustainable cities in central and eastern European countries. Moving towards smart specialization. Habitat International, 68 (2017),  55–63. 10.1016/j.habitatint.2017.03.005
  51. M. Sharholy, K. Ahmad, G. Mahmood, R. C. Trivedi. Municipal solid waste management in Indian cities – A review. Waste Management, 28 (2) (2008),  459–467. 10.1016/j.wasman.2007.02.008
  52. N. Sheng, U. W. Tang. The first official city ranking by air quality in China – A review and analysis. Cities, 51 (2016),  139–149. 10.1016/j.cities.2015.08.012
  53. K. Szopik-Depczyńska, K. Cheba, I. Bąk, M. Stajniak, A. Simboli, G. Ioppolo. The study of relationship in a hierarchical structure of EU sustainable development indicators. Ecological Indicators, 90 (December 2017) (2018),  120–131. 10.1016/j.ecolind.2018.03.002
  54. W. Poortinga, L. Steg, C. Vlek. Values, environmental concern, and environmental behavior: A study into household energy use. Environment and Behavior, 36 (1) (2004),  70–93. 10.1177/0013916503251466
  55. R. Osbaldiston, J. P. Schott. Environmental sustainability and behavioral science: Meta-analysis of proenvironmental    behavior    experiments.    Environment    and    Behavior,    44    (2)    (2012),                257–299.10.1177/0013916511402673
  56. D. L. Omucheni, K. A. Kaduki, W. D. Bulimo, H. K. Angeyo. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malaria Journal, 13 (485) (2014),  1–11.10.1186/1475-2875-13-485
  57. Chamoso P., Gonzalez-Briones A., Rodriguez S., Corchado J.M., Tendencies of technologies and platforms in smart cities: A state-of-the-art review. DOI: 10.1155/2018/3086854.
  58. Costa D. G., Damasceno A., Silva I., CitySpeed: A crowdsensing-based integrated platform for general- purpose monitoring of vehicular speeds in smart cities. Smart Cities, 2 (1) (2019), 46–65. DOI: 10.1155/2018/3086854.
  59. Dabberdt W. F., Miller E., Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmospheric Enviroment, 34 (27) (2000),  4667–4673. DOI: 10.1016/S1352-2310(00)00141-2.
  60. Kim D., Kim S., Role and challenge of technology toward a smart sustainable city: Topic modeling, classification, and time series analysis using information and communication technology patent data. Sustainable Cities and                      Society,                              82                                                                   (2022). DOI: 10.1016/j.scs.2022.103888.
  61. Kontokosta C. E., Malik A., The resilience to emergencies and disasters index: Applying big data to benchmark and validate neighborhood resilience capacity. Sustainable Cities and Society, 36 (2018), 272–285. DOI: 10.1016/j.scs.2017.10.025.
  62. Li W., Batty M., Goodchild M.F., Real-time GIS for smart cities. International Journal of Geographical Information Science, 34 (2) (2020),  311–324. DOI: 10.1080/13658816.2019.1673397
  63. Lim C. C., Kim H., Vilcassim M. R., Thurston G. D., Gordon T., Chen L.-C., et al., Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in seoul, South Korea, Environment International, 131 (2019). DOI: 10.1016/j.scs.2022.104161
  64. Mouratidis K., Bike-sharing, car-sharing, e-scooters, and uber: Who are the shared mobility users and where do they live? Sustainable Cities and Society, 86 (2022). DOI: 10.1016/j.scs.2022.104161
  65. Muñoz-Villamizar A., Solano-Charris E., AzadDisfany M., Reyes-Rubiano L., Study of urban-traffic congestion based on google maps API: the case of Boston. IFAC-PapersOnLine, 54 (1) (2021), 211–216. DOI: 10.1016/j.ifacol.2021.08.079
  66. Mydlarz C., Sharma M., Lockerman Y., Steers B., Silva C., Bello J.P., The life of a new york city noise sensor network. Sensors, 19 (6) (2019). DOI: 10.3390/s19061415
  67. Nguyen H. T., Marques P., Benneworth P., Living labs: Challenging and changing the smart city power relations? Technological Forecasting and Social Change, 183 (2022). DOI: 10.1016/j.techfore.2022.121866.
  68. Oliveira, F., Costa, D. G., & Assis, F. (2022). An IoT Platform for the Development of Low-cost Emergencies Detection Units based on Soft Sensors. In 2022 IEEE international smart cities conference (ISC2),  1–4.DOI: 10.1109/ISC255366.2022.9922105
  69. Senturk, I. F., & Kebe, G. Y. (2019). A New Approach to Simulating Node Deployment for Smart City Applications Using Geospatial Data. In International symposium on networks, computers and communications,  1–5.DOI: 10.1109/ISNCC.2019.8909101
  70. Vargas-Munoz J. E., Srivastava S., Tuia D., Falcão A. X., OpenStreetMap: Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience and Remote Sensing Magazine, 9 (1) (2021), 184–19. DOI: 10.1109/MGRS.2020.2994107.
  71. Tchuitcheu W. C., Bobda C., Pantho M. J. H., Internet of smart-cameras for traffic lights optimization in smart cities. Internet of Things, 11 (2020). DOI: 10.1016/j.iot.2020.100207
  72. Zhou M., Mehedi Hassan M., Goscinski A., Emerging edge-of-things computing for smart cities: Recent advances          and          future          trends.          Information          Sciences,          600          (2022),          442–445.DOI: 10.1016/j.ins.2020.03.008