hydrogel

Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics

The hydrogel film composites of biomedical purpose based on copolymers of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate have been synthesized. The influence of filler nature, quantity and composition on the regularities of obtaining, structure and properties of hydrogels have been determined. Synthesized hydrogel composites are recommended to be used for the controlled drug release systems.

The peculiarities of the polyvinylpyrrolidone copolymers synthesis for contact lenses

The research results of the hydrogels synthesis rules on the basis of 2-hydroxyethylmethacrylate-polyvinylpyrrolidone copolymers and effective ways of adjusting of their proper¬ties are given. Synthesized copolymers appeared to be effective materials for production of hydrophilic contact lenses.

Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes

The crosslinked copolymers of 2-hydroxyethylmethacrylate with polyvinylpyrrolidone as granules and membranes have been synthesized and their penetration and sorption-desorption properties have been investigated. The model of mass-transfer from the solid soluble surface through the hydrogel shell has been suggested. The developed materials are able to create encapsulated and granular polymer forms of drugs prolonged release.

Synthesis of new conducting materials on the basis of polymer hydrogels

The new conducting polymer hydrogels on the basis of co-polymers of hydroxyethylenemethacrylate and polyvinylpyrrolidone with different nature non-organic fillers have been developed. The dependence of obtained materials electric characteristics on synthesis conditions, quantity and nature of powder filler, moisture content, ambient temperature and magnetic field action have been determined.

Review: Synthetic Polymer Hydrogels for Biomedical Applications

Synthetic polymer hydrogels constitute a group of biomaterials, used in numerous biomedical disciplines, and are still developing for new promising applications. The aim of this study is to review information about well known and the newest hydrogels, show the importance of water uptake and cross-linking type and classify them in accordance with their chemical structure.

Peculiarities of Filled Porous Hydrogels Production and Properties

The peculiarities of porous hydrogel compositions formed on the basis of copolymers of methacrylic esters and polyvinylpyrrolidone with mineral and organic filler have been investigated. In the composite structure silver particles are obtained via argentum nitrate reduction by tertiary nitrogen of polyvinylpyrrolidone. The effect of filler nature and amount, argentums nitrate amount and structure of polymer-monomer composition on the polymerization rate and properties of composites has been examined.

Synthesis and Characterization of Organic-Inorganic Membranes Containing Sulphogroups

Organic-inorganic materials have been synthesized by photoinitiated copolymerization of monomers: acrylonitrile, acrylamide and 3-sulphopropyl acrylate potassium salt in the presence of sol-gel systems based on tetraethoxysilane. Thermal stability, water uptake and ion-exchange capacity of obtained materials have been determined. Undertaken studies may be used for development of protonconductive membrane for fuel cells.

Synthesis and Characterization of Dextran Methacrylates

Dextran methacrylates were received by acylation of dextran with methacryloilchloride in the presence of tertiary amines in the DMF/LiCl solution. Degree of substitution (DS) of synthesized derivatives reached 1.8 methacrylic residues per glucopyranoside unit of dextran macromolecule. Dextran methacrylates, obtained in the presence of triethylamine, with DS over 0.5 were insoluble in water. Derivatives synthesized in the presence of pyridine were separated in the form of a stable water soluble complex with pyridine chloride. These complexes maintain their water solubility up to DS = 1.8.

The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers

The proceeding of 2-hydroxyethylmethacrylate grafted polymerization on polyvinylpirrolidone has been examined in the presence of ferrum(II) sulfate. It was observed the formation of crosslinked copolymer capable to be used as a matrix for metal chemical reduction and for metal hydrogel composites obtaining. The effect of Fen+ structure and concentration on the structural parameters of the polymeric network, copolymers composition, efficiency and degree of grafting has been determined.