Kinetics of High-Temperature Interaction of Titanium Alloys with a Carbon-Containing Gaseous Medium

2018;
: 29-39
https://doi.org/10.23939/ujmems2018.01.029
Received: April 18, 2018
Revised: June 20, 2018
Accepted: June 26, 2018

V. Trush, A. Luk’yanenko, "Kinetics of High-Temperature Interaction of Titanium Alloys with a Carbon-Containing Gaseous Medium", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 4, no. 1, pp. 29-39, 2018.

1
Karpenko Physico-Mechanical Institute of the NAS of Ukraine
2
Karpenko Physico-Mechanical Institute of the NAS of Ukraine

Due to their excellent complex of physical, chemical, and mechanical properties, titanium alloys are unique materials for many branches of industry. An important feature of titanium is its high reactivity concerning the interstitial chemical elements (oxygen, nitrogen, and carbon). The absorption of interstitial elements by titanium alloys causes change in physical and mechanical properties of alloys and articles which are made of them. It should be noted that the titanium alloys are classified, in particular, by the compositions of their structures. Investigations of titanium alloys of different structural compositions will enable us to take into account the influence of their features on the kinetics of their interaction with interstitial elements.

Results of experimental investigations of the influence of a carbon-containing gaseous medium on the kinetics of interaction of titanium alloys of different structural classes (α-, pseudo-α, and (α+β)) are presented in this paper. It is established that the interaction at high temperatures (T = 750…850°C) of titanium alloys with rarefied carbon-containing gaseous medium (Ar+16.7% C3H8) under a pressure of P = 0.116 Pa leads to the increase in mass of the specimens according to a law which is close to linear dependence on time.

[1] V. N. Moiseyev, Titanium Alloys. Russian aircraft and aerospace applications. London-New York-Singapore: Taylor & Francis Group, 2006.

[2] I. V. Gorynin, and B. B. Chechulin, Titan v mashinostroenii [Titan in mechanical engineering]. Moscow, Russia: Mashinostroenie Publ., 1990. [in Russian].

[3] F. Hideki, T. Kazuhiro, Y. Yoshito, “Application of titanium and its alloys for automobile parts,” in Nippon Steel Technical Report, no. 88, 2003, pp. 70-75.

[4] A. T. Pichuhin., et al., “Influence of the Phase-Structural State of the Surface Layers on the Mechanical Properties of VT1-0 Titanium Alloy”, Materials Science, vol. 47, no. 5, pp. 670-676, 2012. https://doi.org/10.1007/s11003-012-9442-9

[5] G. Lutjering, and J. C. Williams, Titanium alloys. Verlag-Berlin-Heidelberg: Springer Publ., 2007.

[6] S. G. Glazunov, Titanivye splavy. Konstrukcionnye titanovye splavy [Titanium alloys. Structural titanium alloys]. Moscow, Russia: Metallurgiya Publ., 1974. [in Russian].

[7] E. М. Lazarev, Z. I. Kornilova, and N. M. Fedorchuk, Okisleniya ninatovikh splavov [Oxidation of titanium alloys]. Moscow, Russia: Nauka Publ., 1985. [in Russian].

[8] E. Fromm and E. Gebkhardt, Gazy i uglerod v metallakh [Gases and carbon in metals]. Moscow, Russia: Metallurgiya Publ., 1980. [in Russian].

[9] A. I. Gusev, “Fazovyye ravnovesiya. Fazy i soyedineniya v sisteme Ti-C” [“Phase equilibrium. Phases and compounds in the Ti-C system”], Uspekhi khimii [Advances in Chemistry], vol. 71, no. 6, pp. 507-532, 2002. [in Russian].

[10] H. Okamoto, “C-Ti (Carbon-Titanium)”, Journal of Phase Equilibria and Diffusion, vol. 27, no. 3, pp. 306-307, 2006. https://doi.org/10.1361/154770306X109980

[11] E. Storms, Tugoplavkiye karbidy [Refractory carbides]. Moscow, Russia: Atomizdat Publ., 1974. [in Russian].

[12] V. S. Shveykin, et al., Soyedineniya peremennogo sostava i ikh tverdyye rastvory [Compounds of variable composition and their solid solutions]. Sverdlovsk, Russia: UNU AN SSSR Publ., 1984. [in Russian].

[13] E. K. Molchanova, Atlas diagramm sostoyaniya titanovykh splavov [Atlas of state diagrams of titanium alloys]. Moscow, Russia: Mashinostroyeniye Publ., 1964. [in Russian].

[14] Kh. D. Goldshmidt, Splavy vnedreniya [Alloys of the interstitial], vols. 1-2. Moscow, Russia: Mir Publ., 1971. [in Russian].

[15] G. V. Zemkov, and R. L. Kogan, Mnogokomponentnoye diffuzionnoye nasyshcheniye metallov i splavov [Multicomponent diffusion saturation of metals and alloys]. Moscow, Russia: Metallurgy Publ., 1978. [in Russian].

[16] B. F. Ormont, Soyedineniya peremennogo sostava [Compounds of variable composition]. Leningrad, Russia: Khimiya Publ., 1969. [in Russian].

[17] V. P. Elyutin, et al., Vzaimodeystviye okislov metallov z uglerodom [Interaction of metal oxides with carbon]. Moscow, Russia: Metallurgy Publ., 1976. [in Russian].

[18] V. D. Kalner, et al., “Struktura i svoystva okislennykh karbonitridnykh pokrytiy” [“Structure and properties of oxidized carbonitride coatings”], MiTOM [Metallurgy and heat treatment], vol. 3, pp. 54-58, 1990. [in Russian].

[19] I. Dahan, et al., “The development of a functionally graded TiC-Ti multilayer hard coating”, Surf. And Coat. Technol., vol. 137, pp. 111-115, 2011. https://doi.org/10.1016/S0257-8972(00)01122-1

[20] N. G. Boriskina, “Vliyaniye dlitelnogo oksidirovaniya na korrozionnuyu stoykost i mekhanicheskiye svoystva VT1-0” [“The effect of prolonged oxidation on the corrosion resistance and mechanical properties of VT1-0”], in Titan dlya narodnoho hozyaystva [Titan for national economy]. Moscow, Russia: Nauka Publ., 1973, pp. 255-262. [in Russian].

[21] H. Dong, W. Shi, and T.H. Bell, “Potential of improving tribological performance of UHMWPE by engineering the Ti6V4Al counterfaces”, Wear, vols. 225-229, pp. 146-153, 1999. https://doi.org/10.1016/S0043-1648(98)00356-1

[22] V. A. Zhilyayev, et al., “Issledovaniye protsessa okisleniya oksikarbidov titana na vozdukhe” [“Investigation of oxidation of titanium oxycarbides in air”], Neorganicheskiye materialy [Inorganic materials], vol. 10, no. 5, pp. 1006-1010, 1974. [in Russian].

[23] I. Polyakova, and Th. Hubert, “Thermal stability of TiN thin films investigated by DTG/DTA”, Surface and Coating Technology, vol. 141, pp. 55-61, 2001. https://doi.org/10.1016/S0257-8972(01)01042-8

[24] A. A. Ilyin, B. A. Kolachev, and I. S. Polkin, Titanovyye splavy. Sostav. Struktura. Svoystva [Titanium alloys. Composition. Structure. Properties]. Moscow. VILS-MATI Publ., 2009. [in Russian].