Cyber-Physical Modeling of Implantable Devices for Interstitial Therapeutic Systems

2025;
: cc. 123 - 128
Автори:
1
Simon Kuznets Kharkiv National University of Economics, Ukraine; Anatolii Pidhorniy Institute of Power Machines and Systems, Ukraine

This paper proposes a cyber-physical modeling framework that enables a planner to optimally position implantable medical devices in therapeutic systems that operate interstitially. To inspire a model, we use applications such as interstitial photodynamic therapy and brachytherapy, and frame the problem as constrained packing of cylindrical objects with spatial and angular feasibility conditions. An approach combines anatomical geometry, device orientation restrictions, and tissue-specific feasibility to create an integrated optimization model. The proposed modeling framework enables a planner to devise device configurations that temporally maximize therapeutic coverage for the targeted anatomy while minimizing the risks of overlap, thermal injury, and mechanical interference by employing incremental sequential algorithms. Numerical simulations will demonstrate the model’s ability to support increased precision of treatment and geometry-aware clinical decisions.

[1] George, A.,  Shrivastav,  P.  S.  (2022).  Photodynamic therapy with light emitting fabrics: a review. Archives of Dermatological Research, 314(8), 929–936. DOI: https://doi.org/10.1007/s00403-021-02301-3

[2] Chvetsov, A. V. (2025). Optimization Problems in Radiotherapy for Hypoxic Tumors. Springer. DOI: https://doi.org/10.1007/978-981-96-7001-7

[3] Xu, K., Ko, S. H., Chen, J. (2024). Advances in wearable and implantable bioelectronics for precision medicine. Bio- Design and Manufacturing, 7(3), 383–387. DOI: https://doi.org/10.1007/s42242-024-00302-5

[4] Pons-Faudoa, F. P., Ballerini, A., Sakamoto, J.,  et  al. (2019). Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomedical Microdevices, 21(2), 47. DOI: https://doi.org/10.1007/s10544-019-0389-6

[5] Obaid, G., Celli, J. P., Broekgaarden, M., et al. (2024). Engineering photodynamics for treatment, priming and imaging. Nature Reviews Bioengineering, 2(8), 752–769. DOI: https://doi.org/10.1038/s44222-024-00196-z

[6] Fitter in-body bioelectronics. Nature  Biomedical Engineering, (2019) 3(1), 1–2. DOI: https://doi.org/10.1038/s41551-018-0346-3.

[7] Li, B., Lin, L. (2022). Internal light source for deep photo- dynamic therapy. Light: Science & Applications, 11(1), 85. DOI: https://doi.org/10.1038/s41377-022-00780-1.

[8]     Park,  Y.  W.,  Kim,  S.  M.,  Lee,  J.  Y.,  et  al.  (2015). Application of biosensors in smart packaging. Molecular &     Cellular     Toxicology,     11(3),     277–285.     DOI: https://doi.org/10.1007/s13273-015-0027-1.

[9] Bhatlawande, A. R., Ghatge, P. U., Shinde, G. U., et al. (2024). Unlocking the future of smart food packaging: biosensors, IoT, and nano materials. Food Science and Biotechnology,              33(7),   1075–1091.            DOI: https://doi.org/10.1007/s10068-023-01486-9.

[10] Yaskov, G., Chugay, A. (2020). Packing Equal Spheres by Means of the Block Coordinate Descent Method. CEUR Workshop Proceedings, 2608, 150–160. DOI: https://doi.org/10.32782/cmis/2608-13.

[11] Chugay, A. M., & Zhuravka, A. V. (2020, January). Packing optimization problems and their application in 3D printing. In International Conference on  Computer Science, Engineering and Education Applications (pp. 75- 85). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-55506-1_7.

[12] Stoyan, Y., Yaskov, G., Romanova, T., Litvinchev, I., Yakovlev, S., Cantú, J. M. V. (2020). Optimized packing multidimensional hyperspheres: a unified approach. Mathematical Biosciences and Engineering, 17(6), 6601–6630. DOI: https://doi.org/10.3934/mbe.2020344.

[13]   Wächter, A., Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large- scale nonlinear programming. Mathematical Programming,             106(1), 25–57.     DOI: https://doi.org/10.1007/s10107-004-0559-y.