ТЕОРЕТИЧНИЙ АНАЛІЗ ТА ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ПРОЦЕСІВ ДИСОЦІАЦІЇ H2S У НАДВИСОКОЧАСТОТНОМУ ПЛАЗМОТРОНІ

Автори:
1
Національний університет „Львівська політехніка”

Проведено теоретичний аналіз гідродинамічних умов у плазмохімічному реакторі при тангенціальному подаванні газу. Показано, що внаслідок створення закрученого потоку в реакторі виникає градієнт тиску, завдяки цьому вздовж  вертикальної осі виникає зона розрідження, що сприяє виникненню плазмового розряду. На підставі проведених експериментальних досліджень плазмолізу сірководню в закрученому потоці  та аналізу зображень плазмового розряду з використанням монохроматичних світлофільтрів встановлено загальну структуру плазмового розряду. Встановлено вплив градієнту температури в реакторі на можливість формування кластерів сірки як передумови формування високомолекілярного продукту – полімерної сірки.

1. Yavorskyi, V., Znak, Z. (2011). Plazmokhimichna tekhnolohiia spetsialnykh vydiv sirky ta vodniu. Nauka zakhidnoho rehionu Ukrainy (1990-2010), 274-287.
2. Hydrogen Energy and Fuel Cells. A vision of our future (2003). Final report of the High Level Group (EUR 20719 EN). European Commission, 36.
3. Ramachandran, R., Menon, R. K. (1998). An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy, 23, 7, 593-598. doi.org/10.1016/S0360-3199(97) 00112-2
https://doi.org/10.1016/S0360-3199(97)00112-2
4. Znak, Z. O., Olenych, R. R. (2015). Otrymannia stabilizovanoi polimernoi sirky plazmokhimichnym sposobom. Perspektyvni polimerni materialy ta tekhnolohii: monohrafiia, 70-84.
5. Nishida, H., Abe, T. (2011). Validation study of numerical simulation of discharge plasma on DBD plasma actuator. AIAA Paper No, 3913, 12. Google Scholar
https://doi.org/10.2514/6.2011-3913
6. Bogdanov, E. A., Kolobov, V. I., Kudryavtsev, A. A., Tsendin, L. D. (2002). Scaling laws for oxygen discharge plasmas. Technical Physics, 47, 8, 946-954. doi.org/ 10.1134/1.1501672
https://doi.org/10.1134/1.1501672
7. Bogdanov, E. A., Kudryavtsev, A. A., Kuranov, A. I., Kozlov, I. A., Tkachenko, T. V. (2008). 2D Simulation of DBD Plasma Actuator in Air. AIAA Paper No, 1377, 16.
https://doi.org/10.2514/6.2008-1377
8. Bogdanov, E. A., Kudryavtsev, A. A., Tsendin, L. D., Arslanbekov, R. R., Kolobov, V. I., Kudryavtsev, V. V. (2003). Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge. Technical Physics, 48, 8, 983-994. doi.org/ 10.1134/1.1608559
https://doi.org/10.1134/1.1608559
9. Corke, T., Jumper, E., Post, M., Orlov, D. (2002). Application of weakly ionized plasmas as wing flow control devices. AIAA Paper No 350, 9.
https://doi.org/10.2514/6.2002-350
10. Enloe, C., McHarg, M., Font, G. I., McLaughlin, T. (2009). Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. AIAA Paper No, 1622. 1-8. doi.org/10.2514/6.2009-1622
https://doi.org/10.2514/6.2009-1622
11. Enloe, C., McLaughlin, T., VanDyken, R., Fischer, J. (2004). Plasma structure in the aerodynamic plasma actuator. AIAA Paper No 844, 1-8.
https://doi.org/10.2514/6.2004-844
12. Font, G. (2006). Boundary Layer Control with Atmospheric Plasma Discharges. AIAA Journal, 44, 7, 121-131.
https://doi.org/10.2514/1.18542
13. Likhanskii, A., Shneider, M., Macheret, S., Miles, R. (2006). Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper No. 1204, 12. doi.org/10.2514/6.2006-1204
https://doi.org/10.2514/6.2006-1204
14. Forte, M., Jolibois, J., Moreau, E., Touchardm G., Cazalens M. (2006). Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity-application to airflow control. AIAA Paper, No. 2863, 9. doi.org/ 10.2514/6.2006-2863
https://doi.org/10.2514/6.2006-2863
15. Massines, F., Rabehi, A., Decomps, P. (1998). Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics, 83, 2950-2957. doi.org/ 10.1063/1.367051
https://doi.org/10.1063/1.367051
16. Matveyev, A. A., Silakov, V. P. (1999). Theoretical study of the role of ultraviolet radiation of the non-equilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. Plasma Sources Science and Technology, 8, 1, 162-178.
https://doi.org/10.1088/0963-0252/8/1/019
17. Javorsk, V., Znak, Z. (2009). Hydrogen sulphide decomposition in ultrahigh-frequency plasma. Chemistry & chemical technology, 3, 4, 309-314.
https://doi.org/10.23939/chcht03.04.309