ВИЗНАЧЕННЯ ЯКІСНИХ ХАРАКТЕРИСТИК СОЄВОЇ ТА РІПАКОВОЇ ОЛІЇ МЕТОДОМ ІНФРАЧЕРВОНОЇ СПЕКТРОСКОПІЇ

1
Національний університет “Львівська політехніка”
2
Національний університет „Львівська політехніка”
3
Національний університет “Львівська політехніка”
4
Lviv Polytechnic National University
5
Національний університет “Львівська політехніка”
6
Національний університет “Львівська політехніка”

У статті наведено результати дослідження зміни якісного складу рослинних олій сої та ріпаку із зміною ступеня подрібнення сировини, отриманих екстракційним вилученням у стаціонарному шарі в апараті Сокслета з використанням хлористого метилену як розчинника. Проведено ряд дослідів на визначення оптичних властивостей олії методом інфрачервоної спектроскопії. Представлено інфрачервоні спектри поглинання для різних зразків олій. Результати порівняноіз попередніми рефрактометричними дослідженнями та дослідженнями за допомогою ультрафіолетової спектроскопії.

1. Virovka, M. I. (2009). Analiz sposobiv pidhotovky roslynnoi olii dlia vyrobnytstva biodyzelnoho palyva. Naukovyi visnyk Natsionalnoho universytetu bioresursiv I pryrodokorystuvannia Ukrainy, 134(2), 100-108.
2. Semenyshyn, Ye. M., Trotskyi, V. I., Kovalska, Yu. V., Rymar, T. I. (2008). Ekstraktsiine vyluchennia olii z metoiu oderzhannia biopalyva. Visnyk NU "Lvivska politekhnika" "Teploenerhetyka", 179-185.
3. Polishchuk, V. M. (2010). Tvarynni ta roslynni zhyry yak syrovyna dlia vyrobnytstva biodyzelia. Retrieved from: http://www.nbuv.gov.ua/portal/chem_biol/nvnau/ 2010_144_3/10pvm.pdf
4. Silva, L., Pinto, J., Carrola, J., Paiva-Martins, F. (2010). Oxidative stability of olive oil after food processing and comparison with other vegetable oils. Food Chem., 121, 1177-1187.
https://doi.org/10.1016/j.foodchem.2010.02.001
5. Martinez-Yusta, M., Goicoechea, E., Guillen, M. D. (2014). A review of thermo-oxidative degradation of food lipids studied by 1H NMR spectroscopy: influence of degradative conditions and food lipid nature. Compr. Rev. Food Sci. F., 13, 838-859.
https://doi.org/10.1111/1541-4337.12090
6. Hlukhaniuk, A., Kuzminchuk, T., Chyzhovych, R., Semenyshyn, Ye., Ivashchuk, O. (2020). Doslidzhennia vplyvu stupenia podribnennia ta pryrody poliarnykh rozchynnykiv na efektyvnist vyluchennia olii z roslynnoi syrovyny ekstraktsiinym metodom Chemistry, Technology and Application o fSubstances, 161-168.
7. Ivashchuk, O., Atamanyuk, V., Semenyshyn, Ye., Hlukhaniuk, A., Chyzhovych, R., Kuzminchuk, T. (2020). The research of the rapeseed oil extraction for the biodiesel production. Chemical and process engineering for environment and health. Warsaw, Poland: Publishing House of Lukasiewicz, 49-56.
8. Chyzhovych, R., Hlukhaniuk, A., Kuzminchuk, T., Ivashchuk, O., Semenyshyn, Ye., Atamanyuk, V., Khomyak, S. (2020). Doslidzhennya yakisnyx xarakterystyk soyevoyi oliyi v zalezhnosti vid sposobu oderzhannya. Postup v naftogazopererobnij ta naftoximichnij promyslovosti: materialy X Mizhnarod. naukovo-texnichnoy konferenciyi, 133-134.
9. Caires, A. R. L., Teixeira, M. R. O., Suarez, Y. R., Andrade, L. H. C., Lima, S. M. (2008). Discrimination of transgenic and conventional soybean seeds by Fourier transform infrared photoacoustic spectroscopy. App. Optics., 62, 1044-1047.
https://doi.org/10.1366/000370208785793182
10. Ogruc Ildiz, G., Celik, O., Atak, C., Yilmaz, A., Kabuk, H., & Kaygisiz, E. et al. (2019). Raman Spectroscopic and Chemometric Investigation of Lipid-Protein Ratio Contents of Soybean Mutants. Applied Spectroscopy, 74(1), 34-41. doi: 10.1177/0003702819859940
https://doi.org/10.1177/0003702819859940
11. Meng, X., Pan, Q., Ding, Y., & Jiang, L. (2014). Rapid determination of phospholipid content of vegetable oils by FTIR spectroscopy combined with partial least-square regression. Food Chemistry, 147, 272-278. doi: 10.1016/j.foodchem.2013.09.143
https://doi.org/10.1016/j.foodchem.2013.09.143
12. Tamagno, S., Aznar-Moreno, J., Durrett, T., Vara Prasad, P., Rotundo, J., & Ciampitti, I. (2020). Dynamics of oil and fatty acid accumulation during seed development in historical soybean varieties. Field Crops Research, 248, 107719. doi: 10.1016/j.fcr.2020.107719
https://doi.org/10.1016/j.fcr.2020.107719
13. O'Brain, R. (2007). Zhyry y masla. Proyzvodstvo, sostav y svoistva, prymenenye. Sankt-Peterburh, Professyia, 752.
14. Sienkiewicz, A., Czub, P. (2016). The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol A. Industrial Crops And Products, 83, 755-773. doi: 10.1016/j.indcrop.2015.11.071
https://doi.org/10.1016/j.indcrop.2015.11.071
15. Gamage, P. K., O'Brien, M., Karunanayake, L. (2009). Epoxidation of some vegetable oils and their hydrolysed products with peroxyformic acid-optimised to industrial scale. J. Nat. Sci. Found. Sci., 37 (4), 229-240.
https://doi.org/10.4038/jnsfsr.v37i4.1469
16. Narine, S. S., Kong, X., 2005. Vegetable oils in production of polymers and plastics. Bailey's Ind. Oil Fat Prod., 279-301.
https://doi.org/10.1002/047167849X.bio047
17. Aykas, D., Karaman, A., Keser, B., & Rodriguez-Saona, L (2020). Non-Targeted Authentication Approach for Extra Virgin Olive Oil. Foods, 9(2), 221. doi: 10.3390/foods9020221
https://doi.org/10.3390/foods9020221
18. Liu, H., Chen, Y., Shi, C., Yang, X., Han, D. (2020). FT-IR and Raman spectroscopy data fusion with chemometrics for simultaneous determination of chemical quality indices of edible oils during thermal oxidation. LWT, 119, 108906. doi: 10.1016/j.lwt.2019.108906
https://doi.org/10.1016/j.lwt.2019.108906
19. Kovalenko, I., Rippke, G., & Hurburgh, C. (2006). Measurement of soybean fatty acids by near-infrared spectroscopy: Linear and nonlinear calibration methods. Journal Of The American Oil Chemists' Society, 83(5), 421-427. doi: 10.1007/s11746-006-1221-z
https://doi.org/10.1007/s11746-006-1221-z
20. Costa Filho, P. (2014). Developing a rapid and sensitive method for determination of trans-fatty acids in edible oils using middle-infrared spectroscopy. Food Chemistry, 158, 1-7. doi: 10.1016/j.foodchem.2014.02.084
https://doi.org/10.1016/j.foodchem.2014.02.084
21. Sun, D. (2009). Infrared spectroscopy for food quality analysis and control. Amsterdam, [etc.]: Elsevier.
22. Rohman, A., & Che Man, Y. (2012). Quantification and Classification of Corn and Sunflower Oils as Adulterants in Olive Oil Using Chemometrics and FTIR Spectra. The Scientific World Journal, 2012, 1-6. doi: 10.1100/2012/250795
https://doi.org/10.1100/2012/250795
23. Lerma-García, M., Ramis-Ramos, G., Herrero-Martínez, J., & Simó-Alfonso, E. (2010). Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chemistry, 118(1), 78-83. doi: 10.1016/j.foodchem.2009.04.092
https://doi.org/10.1016/j.foodchem.2009.04.092
24. Jović, O., Smolić, T., Jurišić, Z., Meić, Z., Hrenara, T. (2013). Chemometric analysis of croatian extra virgin olive oils from central Dalmatia region. Croat. Chem. Acta, 86, 335-344.
https://doi.org/10.5562/cca2377
25. Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., Tegou, E. (2006). Applications of Fourier transform - infrared spectroscopy to edible oils. Anal. Chim. Acta, 573-574, 459-465.
https://doi.org/10.1016/j.aca.2006.05.034
26. Moharam, M. A., Abbas, L. M. (2010). A study on the effect of microwave heating on the properties of edible oils using FTIR spectroscopy. Afr. J. Microbiol. Res., 4, 1921-1927.
27. Guillen, M. D., Cabo, N. (2002). Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem., 77, 503-510.
https://doi.org/10.1016/S0308-8146(01)00371-5