Ізомеризація н-гексану на нікельвмісному цеоліті типу морденіту

2020;
: сс. 234 - 238
1
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
2
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
4
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
5
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

Синтезовано зразки нікельвмісного морденіту внаслідок просочування із водних розчинів нітрату нікелю. З використанням методу низькотемпературної адсорбції/десорбції азоту та мікроімпульсної ізомеризації н-гексану вивчено пористі та каталітичні властивості. За температур 523–573 К максимальні виходи ізомерів становлять 10-12 % мас. для вмісту Ni 1–5 % мас.

  1. Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F
  2. Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
  3. Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
  4. Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
  5. Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919.
  6. Dhar A., Vekariya R., Bhadja P.: Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
  7. Dhar A., Dutta A., Castillo-Araiza C. et al.: Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052
  8. Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al.: Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127
  9. Yun S., Seong M., Park Y. et al.: J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328
  10. Patrylak L.: Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205
  11. Brei V.: Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7
  12. Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
  13. Jordao M., Simoes V., Cardoso D.: Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
  14. Lima P., Garetto T., Cavalcante C.L.Jr. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
  15. Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
  16. Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2018, https://doi.org/10.1007/s10934-018-0685-1
  17. Patrylak L.: Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512
  18. Patrylak K.,, Patrylak L.,, Repetskyi I.: Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8
  19. Patrylak K., Patrylak L., Voloshyna Yu. et al.: Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y
  20. Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977
  21. Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
  22. Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
  23. Patrylak L.: Zh. Phys. Khim., 2005, 79, 1658.
  24. Smail H., Shareef K., Ramli Z.: Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf