Використання методології поверхні відгуку як новітнього підходу до оптимізації вмісту фенолів та антиоксидантної активності плодів фінікової пальми

2020;
: сс. 572 - 582
1
Laboratoire des Sciences Fondamentale, Université Amar Telidji, Laghouat, Algérie
2
Laboratoire des Sciences Fondamentale, Université Amar Telidji, Laghouat, Algérie
3
Laboratoire des Sciences Fondamentale, Université Amar Telidji, Laghouat, Algérie
4
Laboratoire des Sciences Fondamentale, Université Amar Telidji, Laghouat, Algérie
5
Department of Chemistry and QOPNA, University of Aveiro
6
Laboratoire des Sciences Fondamentale, Université Amar Telidji, Laghouat, Algérie

За допомогою факторного плану Бокса-Бенкена досліджено вплив трьох незалежних змінних – часу, температури та співвідношення розчинник-тверда речовина на очисну активність фенолів, флавоноїдів і 2,2-дифеніл-1-пірилгідразилу (DPPH) та зниження антиоксидантної активності йону міді (CUPRAC) метанольних екстрактів фінікових плодів. Аналіз поверхні відгуку показав, що оптимальні параметри ультразвукової екстракції, які максимізували відповіді, становили 30 хв, 298 K і 74,4 мл/г. За допомогою методу ультра-високоефективної рідинної хроматографії і тандемної мас-спектрометрії (UHPLC-DAD-MS/MS) за оптимальних умов визначено орієнтовні характеристики 11 фенольних сполук. Експериментально доведено, що кількість і антиоксидантна активність фенольних сполук відповідають прогнозованим значенням, що вказує на придатність моделі та успіх методології поверхні відгуку для оптимізації умов ультразвукової екстракції.

  1. Chao C., Krueger R.: HortSci., 2007, 42, 1077. https://doi.org/10.21273/HORTSCI.42.5.1077
  2. Al-Alawi R., Al-Mashiqri J., Al-Nadabi J. et al.: Front. Plant Sci., 2017, 8, 1. https://doi.org/10.3389/fpls.2017.00845
  3. http://www.fao.org/faostat/en/#data
  4. Moussouni S., Pintaud J., Vigouroux Y., Bouguedoura N.: PLoS One, 2017, 12. https://doi.org/10.1371/journal.pone.0175232
  5. Hachani S., Hamia C., Boukhalkhal S. et al.: NFS J., 2018, 13, 10. https://doi.org/10.1016/j.nfs.2018.10.001
  6. Djouab A., Benamara S., Gougam H. et al.: Emirates J. Food Agric., 2016, 28, 601. https://doi.org/10.9755/ejfa.2015-12-1056
  7. Mansouri A., Embarek G., Kokkalou E., Kefalas P.: Food Chem., 2005, 89, 411. https://doi.org/10.1016/j.foodchem.2004.02.051
  8. Zineb G., Boukouada M., Djeridane A. et al.: Med. J. Nutrition Metab., 2012, 5, 119. https://doi.org/10.1007/s12349-011-0082-7
  9. Messaoudi R., Abbeddou S., Mansouri A. et al.: Int. J. Food Prop., 2013, 16, 1037. https://doi.org/10.1080/10942912.2011.576355
  10. Benkerrou F., Bachir bey M., Amrane M., Louaileche H.: J. Food Meas. Charact., 2018, 12, 1910. https://doi.org/10.1007/s11694-018-9805-5
  11. Bamba B., Shi J., Tranchant C. et al.: Molecules, 2018, 23, 1685. https://doi.org/10.3390/molecules23071685
  12. Pingret D., Fabiano-Tixier A., Chemat F.: Food Control, 2013, 31, 593. https://doi.org/10.1016/j.foodcont.2012.11.039
  13. Alberti A., Zielinski A., Zardo D. et al.: Food Chem., 2014, 149, 151. https://doi.org/10.1016/j.foodchem.2013.10.086
  14. Bezerra M., Santelli R., Oliveira E. et al.: Talanta, 2008, 76, 965. https://doi.org/10.1016/j.talanta.2008.05.019
  15. Singleton V., Rossi J.: Am. J. Enol. Viticult., 1965, 16, 144.
  16. Lamaison J., Carnat A.: Pharm. Acta Helv., 1990, 65, 315.
  17. Brand-Williams W., Cuvelier M., Berset C.: LWT-Food Sci. Technol., 1995, 28, 25. https://doi.org/10.1016/S0023-6438(95)80008-5
  18. Apak R., Özyürek M., Güçlü K. et al.:Chapter 24 – The CUPRAC Methods of Antioxidant Measurement for Beverages [in:] Preedy V. (Ed.), Processing and Impact on Antioxidants in Beverages. Academic Press 2014, 235-244. https://doi.org/10.1016/B978-0-12-404738-9.00024-6
  19. Nandi P., Parsad R., Gupta V.: Open J. Stat., 2015, 5, 430. https://doi.org/10.4236/ojs.2015.55045
  20. Mokrani A., Madani K.: Separ. Purif. Technol., 2016, 162, 68. https://doi.org/10.1016/j.seppur.2016.01.043
  21. Zhao Z.-Y., Zhang Q., Li Y.-F. et al.: Carbohydr. Polym., 2015, 119, 101. https://doi.org/10.1016/j.carbpol.2014.11.052
  22. Sharma K. et al.: J. Food Drug Anal., 2015, 23, 243. https://doi.org/10.1016/j.jfda.2014.10.005
  23. Ben Ahmed Z. et al.: Anal. Methods, 2016, 8, 6107. https://doi.org/10.1039/C6AY01739H
  24. Quanhong L., Caili F.: Food Chem., 2005, 92, 701. https://doi.org/10.1016/j.foodchem.2004.08.042
  25. Yolmeh M., Habibi Najafi M., Farhoosh R.: Food Chem., 2014, 155, 319. https://doi.org/10.1016/j.foodchem.2014.01.059
  26. Akalin M., Tekin K., Akyüz M., Karagöz S.: Ind. Crops Prod., 2015, 76, 829. https://doi.org/10.1016/j.indcrop.2015.08.005
  27. Abbas F. et al.: Ind. Crops Prod., 2013, 44, 634. https://doi.org/10.1016/j.indcrop.2012.09.008
  28. Cárdenas A., Gomez M., Frontana C.: Procedia Chem., 2014, 12, 62. https://doi.org/10.1016/j.proche.2014.12.042
  29. Jentzer J., Alignan M., Vaca-Garcia C. et al.: Food Chem., 2015, 166, 561. https://doi.org/10.1016/j.foodchem.2014.06.078
  30. Said R. et al.: Int. J. Mol. Sci., 2017, 18, 512. https://doi.org/10.3390/ijms18030512
  31. Ibrahim R. et al.: Rev. Bras. Farmacogn., 2015, 25, 134. https://doi.org/10.1016/j.bjp.2015.02.008
  32. Farag M., Mohsen M., Heinke R., Wessjohann L.: Food Res. Int., 2014, 64, 218. https://doi.org/10.1016/j.foodres.2014.06.021
  33. Adetunji A., Duodu K., Taylor J.: Food Chem., 2015, 175, 225. https://doi.org/10.1016/j.foodchem.2014.11.102