Біо-сорбент, одержаний з annona squamosa, для видалення барвника метилового червоного з води: дослідження адсорбційного потенціалу

1
Department of Chemistry, Acharya Nagarjuna University
2
Department of Chemistry, Acharya Nagarjuna University
3
Department of Chemistry, KL University
4
Department of Chemistry, Acharya Nagarjuna University

Проведені дослідження сорбційної здатності до метилового червоного (MЧ) сорбенту, отриманого з листя та кори Annona squamosa, з використанням штучно створених стоків. Визначено різні чинники, що впливають на адсорбцію, а саме: початкова концентрація, час контакту, дозування адсорбенту, а такожвстановлено вплив температури. Рівновага адсорбції проаналізована за допомогою ізотерм Фройндліха, Лангмюра, Темкіна та Дубініна-Радушкевича. Для визначення швидкості та кінетики адсорбції застосовували рівняння псевдопершогоі псевдодругогопорядку, дифузії Вебера та Морріша, дисперсії пор Бангема та рівняння Еловіча. Досліджено інтерференцію п’ятикратної кількості регулярних аніонів і катіонів, присутніх у звичайних водах. Встановлено, що такі катіони, як Ca2+, Mg2+ та Cu2+, демонструють певний опір, однак найбільшу екстракцію МЧсинергетично демонструютьFe2+ та Zn2+. Показано, що розроблені методи ефективно застосовані до деяких стоків. Результати експериментальних даних визнані відповідними кінетичній моделі псевдо-першого порядку. Значення коефіцієнта кореляції (R2) та коефіцієнта поділу (RL) підтверджують, що адсорбція підпорядковується адсорбції Ленгмюра. 

Cationic Dyes from Water. J. Colloid Interf. Sci.2005, 281, 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
[2] Bhattacharyya, K.; Sharma A. Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem Leaf Powder. Dyes Pigm.2005, 65, 51-59. https://doi.org/10.1016/j.dyepig.2004.06.016
[3] Robinson, T.; Chandran, B.; Nigam, P. Studies on the Production of Enzymes by White-Rot Fungi for the Decolorization of Textile Dyes. Enzyme Microb. Technol.2001, 29, 575-579. https://doi.org/10.1016/S0141-0229(01)00430-6
[4] Shah, V.; Nerud, F. Lignin Degrading System of White-Rot Fungi and its Exploitation for Dye Decolorization, Can. J. Microbiol.2002, 48, 857-870. https://doi.org/10.1139/w02-090
[5] Josefa, S.Y.M.; De Oliveria, E. Heavy Metals Removal in Industrial Effluents by Sequential Adsorption Treatment. Adv. Environ. Research.2003, 7, 263-272. https://doi.org/10.1016/S1093-0191(01)00128-9
[6] Malik, D.J.; Strelko, V.J.; Streat, M.; Puziy, A.M. Characterization of Novel Modified Active Carbons and Marinealgal Biomass for the Selective Adsorption of Lead. Water Research.2002, 369, 1527-1538. https://doi.org/10.1016/S0043-1354(01)00348-7
[7] Arslanoglue, F.N.; Kar, F.; Arslan, N. Adsorption of Dark Colored Compounds from Peach Pulp by Using Powdered Activated Carbon. J. Food. Eng.2005, 71, 156-163. https://doi.org/10.1016/j.jfoodeng.2004.10.029
[8] Senthilkumaar, S.; Varadarajab, P.R.; Porkodi K.; Subbhuraam, C.V. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. J. Colloid. Inter. Sci.2005, 284, 78-82. https://doi.org/10.1016/j.jcis.2004.09.027
[9] Laszlo, J.A. Preparing an Ion Exchange Resin from Sugarcane Bagasse to Remove Reactive Dye from Wastewater. Text. Chem. Color.1996, 28, 13-17.
[10] Gemea, A.H.; Mansour, I.A.; El-Sharkawy, R.G.; Zaki, A.B. Kinetics and Mechanism of the Heterogeneous Catalyzed Oxidative Degradation of Indigo Carmine. J. Mol. Catal. Chem.2003, 193,109-120. https://doi.org/10.1016/S1381-1169(02)00477-6
[11] Grimau, V.L.; Gutierrez, M.C. Decolorization of Simulated Reactive Dyebath Effluents by Electrochemical Oxidation Assisted by UV Light. Chemosphere. 2006, 62, 106-112. https://doi.org/10.1016/j.chemosphere.2005.03.076
[12] Hachem, C.; Bocquillon F.; Zahraa, O.; Bouchy, M. Decolorization of Textil Industry Wastewater by the Photocatalytic Degradation Process. Dyes. Pigm.2001, 49, 117-125. https://doi.org/10.1016/S0143-7208(01)00014-6
[13] Cisneros, R.L.; Espinoza, A.G.; Litter, M.I. Photodegradation of an Azo Dye of the Textile Industry. Chemosphere. 2002, 48, 393-399. https://doi.org/10.1016/S0045-6535(02)00117-0
[14] Gupta V. K.; Suhas. Application of Low-Cost Adsorbents for Dye Removal – A Review. J. Environ. Manage. 2009, 90, 2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017
[15] Srivastava, V.; Mall, I.D.; Mishra, I.M. Equilibrium Modelling of Single and Binary Adsorption of Cadmium and Nickel onto Bagasse Fly Ash. Chem. Eng. J.2006, 117, 79-91. https://doi.org/10.1016/j.cej.2005.11.021
[16] Trivedy, R.K. Pollution Management in Industries,2nd ed.; Karad (India): Environmental Publications, 1995.
[17] Kiely, G. Environmental Engineering; McGraw-hall International Editions, 1998.
[18] Tchobanoglous, G.; Burton, F.L.; Stensel, D.H. Wastewater Engineering: Treatment and Reuse, 4th ed; McGraw Hill, 2003.  
[19] APHA, Standard methods for the Examination of Water and Waste water. American Public Health Association, Washington DC, 1985.
[20] Ramana, K.V.; Latha, K.S.; Ravindranath, K.; Babu, B.H. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hycinth and Tinosporacardifolia Plants from Waste Waters, Rasayan J. Chem. 2017, 10, 349-362.
[21] Srinivasa Reddy, B.; Venkata Ramana, K.; Ravindranath, K. Extraction of Methylene Blue Dye from Polluted Waters Using Some Bio-sorbents. Int. J. Appl. Biol.Pharm.2012, 3 (4), 215-224. 
[22] Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385-470. https://doi.org/10.1515/zpch-1907-5723
[23] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
[24] Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochimica URSS.1940, 12, 217-222.
[25] Dubinin, M.M.; Radushkevich, L.V. The Equation of the Characteristic Curve of Activated Charcoal. Proc. Natl. Acad. Sci., Phys. Chem. Section. 1947, 55, 331.
[26] Hall, K. R.; Eagleton, L. C.; Acrivos A.; Vermeulen, T. Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption under Constant Pattern Conditions. Ind. Eng. Chem. Fundam.1966, 5, 212-223. https://doi.org/10.1021/i160018a011
[27] Sari. I.P.; Simarani, K. Comparative Static and Shaking Culture of Metabolite Derived from Methyl Red Degradation by Lysinibacillusfusiformis Strain W1B6. R. Soc. Open Sci. 2019, 6, 190152. https://doi.org/10.1098/rsos.190152
[28] Ajaz, M.; Rehman, A.; Khan, Z.; Nisar M.A.; Hussain S. Degradation of Azo Dyes by Alcaligenesaquatilis 3c and its Potential Use in the Wastewater Treatment. AMB Expr.2019, 9, 64. https://doi.org/10.1186/s13568-019-0788-3
[29] Kpilraj, N.; Keerthanan, S.; Sithambaresan, M. Natural Plant Extracts as Acid-Base Indicator and Determination of Their Pka Value. J. Chem. 2019, 2019, Article ID 2031342.https://doi.org/10.1155/2019/2031342
[30] Hameed, B.H. Evaluation of Papaya Seeds as a Novel Non-Conventional Low-Cost Adsorbent for Removal of Methylene Blue. J. Hazard. Mater., 2009, 162, 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120
[31] Nunes, A.; Franca, S.A.; Olievera, L.S. Activated Carbon from Waste Biomass: An alternative Use for Biodiesel Production Solid Residues. Biores. Technol.2009, 100, 1786-1792. https://doi.org/10.1016/j.biortech.2008.09.032
[32] Onyango, M.S.; Kojima, Y. Aoyi, O. Bernardo, E.C.; Matsuda, H.J. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9. Colloid Interface Sci.2004, 279, 341-350. https://doi.org/10.1016/j.jcis.2004.06.038
[33] Jain, M.; Garg, V.K.; Kadirvelu, K. Chromium(VI) Removal from Aqueous Solution, Using Sunflower Stem Waste. J. Hazard. Mater.2008, 162, 365-372. https://doi.org/10.1016/j.jhazmat.2008.05.048
[34] Atkins, P.; de Paulo J. Physical Chemistry, 8th ed.; Oxford University Press, 2006.
[35] Yuh-Shan, H. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics. 2004, 59, 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
[36] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem.1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
[37] Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep.Purif. Methods. 2000, 29,189-232. https://doi.org/10.1081/SPM-100100009
[38] Weber Jr., W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution, J. Sanit. Eng. Div.1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
[39] Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2. – Theoretical Models, J.Chem. Soc., Faraday Trans. 1. 1977,73, 456-464. https://doi.org/10.1039/f19777300456
[40] Ozacar, M.; Sengil, V. A Kinetic Study of Metal Complex Dye Sorption onto Pine Sawdust. Process Biochem. 2005, 40, 565-572. https://doi.org/10.1016/j.procbio.2004.01.032
[41] Gerente C., Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption – Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol.2007, 37, 41-127. https://doi.org/10.1080/10643380600729089
[42] Alagumuthu, G.; Rajan, M. Monitoring of Fluoride Concentration in Ground Water of Kadayam Block of Tirunelveli District, India. Rasayan J. Chem.2008, 4, 757-765.
[43] Karthikeyan, G.; Siva Ilango S. Fluoride Sorption Using Morringa Indica-Based Activated Carbon. Iran J. Environ. Health. Sci. Eng.2007, 4, 21-28.
[44] Sakthi S.M.; Rengaraj, V. Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. J. Colloid. Interface Sci.2004, 279, 307-313. https://doi.org/10.1016/j.jcis.2004.06.042
[45] Venkata Ramana, K.;Swarna Latha, K.; Ravindranath, K.; Hari Babu, B. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hyacinth and Tinospora Cordifolia Plants from Waste Waters. Rasayan J. Chem.2017, 10, 349-362.https://doi.org/10.7324/RJC.2017.1021537
[46] Viswanathan, N.; Meenakshi, S. Enriched Fluoride Sorption Using Alumina/Chitosan Composite. J. Hazard. Mater.2010, 178, 226-232. https://doi.org/10.1016/j.jhazmat.2010.01.067
[47] Bouberka, Z.; Kacha, S.; Kameche M.; Elmaleh, S.; Derriche, Z. J. Hazard. Mater.2005, 119, 117-124. https://doi.org/10.1016/j.jhazmat.2004.11.026
[48] Sairam Sundaram, C.; Viswanathan, N.; Meenakshi S. J. Hazard. Mater. 2009, 163, 618-624. https://doi.org/10.1016/j.jhazmat.2008.07.009
[49] Chaturvedi, A.K.; Pathak, K.C.; Singh, V.N. Appl. Clay Sci. 1988, 3, 337-346. https://doi.org/10.1016/0169-1317(88)90024-5