Прогнозування міцності клейових з’єднань деревини дуба, з’єднаних термопластичними полівінілацетатними клеями

2023;
: cc. 110 - 117
1
Lviv Ukrainian National Forestry University
2
Національний університет “Львівська політехніка”
3
Національний університет Львівська політехніка
4
Lviv Ukrainian National Forestry University
5
Lviv Ukrainian National Forestry University

Серед кількох видів термопластичних клеїв, структуровані й неструктуровані полівінілацетатні (ПВА) клеї достатньо широко використовують,, зокрема для формування клейових з’єднань різних порід деревини, серед них дуба. Для забезпечення належних умов використання клейових з’єднань деревини дуба важлива наявність швидких і точних методів прогнозування їхньої міцності і довговічності. Зміни міцності клейових з’єднань деревини дуба, з’єднаних структурованими і неструктурованими ПВА клеями, вивчено за допомогою тривалих експериментальних досліджень. На основі узагальнення експериментальних даних і теоретичних прогнозів механізму утворення клейового шва запропоновано залежності, які дають змогу теоретично розрахувати міцність клейових з’єднань деревини дуба, з’єднаних неструктурованими і структурованими ПВА клеями. Запропоновані рівняння відтворюють експериментальні дані з достатньою точністю ± 3,5 % в діапазоні температур від 251 K до 306 K і вологості від 40 % до 100 %, тому рекомендовані для практичного використання.

  1. Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115
  2. Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol-Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085
  3. Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203
  4. Łebkowska, M.; Załęska-Radziwiłł, M.; Tabernacka, A. Adhesives Based on Formaldehyde-Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617
  5. Bekhta, P.; Müller, M.; Hunko, І. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582
  6. Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007
  7. Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f
  8. Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599
  9. Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220.
  10. Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc-NMA-MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644
  11. Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323
  12. Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899
  13. Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002
  14. Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U. Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043
  15. Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P. Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838
  16. Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459
  17. Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266