Фотополімеризація полігідроксіетилакрилату (ПГЕА): зв'язок експериментальних параметрів і в'язкопружних властивостей

2023;
: cc. 592 - 600
1
Centre de Recherche (CRAPC), Laboratoire (LRM), Université de Tlemcen (UABT)
2
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques
3
Centre de Recherche (CRAPC), Laboratoire (LRM), Université de Tlemcen (UABT)
4
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen
5
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques
6
Laboratoire (LRM), Université de Tlemcen (UABT)

Оцінено активність фотоініціювальної системи на основі триетаноламіну (ТЕОА) і метиленового синього (МС) у фотополімеризації мономеру гідроксіетил-акрилату (ГЕА) в умовах дуже м'якого опромінення. Виявлено помітну різницю в кінетиці полімеризації для серії експериментів ПГЕА залежно від концентрацій ТЕОА/МС, а також рН розчинів. Дійсно, комплексна в'язкість (η*), модуль зберігання (G') і модуль втрат (G") отриманих полімерів потенційно залежали від цих експериментальних параметрів, незважаючи на співрозмірні значення конверсії мономеру.

  1. Liu, Y.; Hu, J.; Wu, Z. Fabrication of coatings with structural color on a wood surface. Coatings 2020, 10, 32. https://doi.org/10.3390/coatings10010032
  2. Seghier, Z.; Couve, J.; Voytekunas, V.; Lipik, V.; Abadie, M.J.M. Light Curable Dental Composites – Kinetics by Plasma and Halogen Lamps. Chem. Chem. Technol. 2011, 5, 413-421. http://dx.doi.org/10.23939/chcht05.04.413
  3. Fouassier, J. P.; Lalevée, J. Photoinitiators for polymer synthe-sis: scope, reactivity, and efficiency. John Wiley & Sons, 2012.
  4. Fouassier, J.P.; Allonas, X.; Burget, D. Photopolymerization Reactions under Visible Lights: Principle, Mechanisms and Exam-ples of Applications. Prog. Org. Coat. 2003, 47, 16-36. https://doi.org/10.1016/S0300-9440(03)00011-0
  5. Burget, D.; Mallein, C.; Fouassier, J.P. Photopolymerization of Thiol–Allyl Ether and Thiol–Acrylate Coatings with Visible Light Photosensitive Systems. Polymer 2004, 45, 6561-6567. http://dx.doi.org/10.1016/j.polymer.2004.07.052
  6. Hamri, S.; Bouchaour, T.; Maschke, U. Erythro-sine/Triethanolamine System to Elaborate Crosslinked poly (2-Hydroxyethylmethacrylate): UV-Photopolymerization and Swelling Studies. Macromol Symp. 2014, 336, 75-81. https://doi.org/10.1002/masy.201300018
  7. Medvedevskikh, Y.; Khovanets’, G.; Yevchuk, I. Kinetic Model of Photoinitiated Copolymerization of Monofunctional Monomers Till High Conversions. Chem. Chem. Technol. 2009, 3, 1-6. https://doi.org/10.23939/chcht03.01.001
  8. Rubens, M.; Latsrisaeng, P.; Junkers, T. Visible Light-Induced Iniferter Polymerization of Methacrylates Enhanced by Continuous Flow. Polym. Chem. 2017, 8, 6496-6505. https://doi.org/10.1039/C7PY01157A
  9. Ottersbach, P.; Lennarz, K.; Bargon, J. Rheological Study of the Kinetics of Photoinitiated Free Radical Polymerizations with the Quartz Microbalance. Macromol. Chem. Phys. 1994, 195, 3929-3935. https://doi.org/10.1002/macp.1994.021951218
  10. Chiou, B.S.; Khan, S.A. Real-Time FTIR and in situ Rheological Studies on the UV Curing Kinetics of Thiol-ene Poly-mers. Macromolecules 1997, 30, 7322-7328.
  11. Steeman, P.A.; Dias, A.A.; Wienke, D.; Zwartkruis, T. Poly-merization and Network Formation of UV-Curable Systems Moni-tored by Hyphenated Real-Time Dynamic Mechanical Analysis and Near-Infrared Spectroscopy. Macromolecules 2004, 37, 7001-7007. https://doi.org/10.1021/ma049366c
  12. He, H.; Li, L.; Lee, L.J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels in Water/Ethanol Mixture. Polymer 2006, 47, 1612-1619. https://doi.org/10.1016/j.polymer.2006.01.014
  13. He, H.; Li, L.; Lee, L. J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels: The Effect of Light Intensity. React. Funct. Polym. 2008, 68, 103-113. https://doi.org/10.1016/j.reactfunctpolym.2007.10.006
  14. Zhang, C.; Han, H.M.; Qu, P.; Xu, J.; Zhou, Y.; Wang, J.; Xu, J. Initiator Concentration Effect on Rheological Properties of a pH-Sensitive Semi-IPN Hydrogel Based on Konjac Glucomannan and Methacrylic Acid. Adv. Mat. Res. 2013, 627, 730-733. https://doi.org/10.4028/www.scientific.net/AMR.627.730
  15. Alim, M.D.; Childress, K.K.; Baugh, N.J.; Martinez, A.M.; Davenport, A.; Fairbanks, B.D.; McBride, M.K.; Worrell, B.T.; Stansbury, J.W.; McLeod, R.R. et al. A Photopolymerizable Ther-moplastic with Tunable Mechanical Performance. Mater. Horiz. 2020, 7, 835-842. https://doi.org/10.1039/C9MH01336A
  16. Barabash, E.; Popov, Y.; Danchenko, Y. The Study of the Influence of Chemical Nature of Functional Groups in Oligomeric and Low--Molecular Modifiers on the Rheological Properties of the Epoxy Oligomer. Chem. Chem. Technol. 2020, 15, 53-60. https://doi.org/10.23939/chcht15.01.053
  17. Garra, P.; Dumur, F.; Morlet-Savary, F.; Dietlin, C.; Foua-ssier, J. P.; Lalevée, J. A New Highly Efficient Amine-Free and Peroxide-Free Redox System for Free Radical Polymerization under Air with Possible Light Activation. Macromolecules 2016, 49, 6296-6309. https://doi.org/10.1021/acs.macromol.6b01615
  18. Podsiadły, R.; Podemska, K.; Szymczak, A.M. Novel Visible Photoinitiators Systems for Free-Radical/Cationic Hybrid Photopo-lymerization. Dyes Pigm. 2011, 91, 422-426. https://doi.org/10.1016/j.dyepig.2011.05.012
  19. Zhang, S.; Li, B.; Tang, L.; Wang, X.; Liu, D.; Zhou, Q. Studies on the Near Infrared Laser Induced Photopolymerization Employing a Cyanine Dye–Borate Complex as the Photoinitiator. Polymer 2001, 42, 7575-7582. http://dx.doi.org/10.1016/S0032-3861(01)00233-6
  20. Padon, K.S.; Scranton, A.B. A Mechanistic Investigation of a Three-Component Radical Photoinitiator System Comprising Me-thylene Blue, N-methyldiethanolamine, and Diphenyliodonium Chloride. J Polym Sci A Polym Chem. 2000, 38, 2057-2066. https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11%3C2057::AID-POLA140%3E3.0.CO;2-5
  21. Bouchikhi, N.; Bouazza, M.; Hamri, S.; Maschke, U.; Lerari, D.; Dergal, F.; Bachari, K.; Bedjaoui-Alachaher, L. Photo-curing Kinetics of Hydroxyethyl Acrylate (HEA): Synergetic Effect of Dye/Amine Photoinitiator Systems. Int J Ind Chem. 2020, 11, 1-9. https://doi.org/10.1007/s40090-019-00197-7
  22. Mills, A.; Wang, J. Photobleaching of Methylene Blue Sensi-tised by TiO2: An Ambiguous System. J. Photochem. Photobiol. A 1999, 127, 123-134. https://doi.org/10.1016/S1010-6030(99)00143-4
  23. Severino, D.; Junqueira, H. C.; Gabrielli, D.S.; Gugliotti M.; Baptista, M. S. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue. Photochem Photobiol. 2003, 77, 459-468. https://doi.org/10.1562/0031-8655(2003)0770459IONCIO2.0.CO2
  24. Morita, H.; Sadakiyo, T. Laser-Induced Polymeric Film Formation from Gaseous Methyl Acrylate. J. Photochem. Photobiol. A 1995, 87, 163-167. https://doi.org/10.1016/1010-6030(94)03975-Z
  25. Encinas, M.V.; Rufs, A.M.; Neumann, M.G.; Previtali, C.M. Photoinitiated Vinyl Polymerization by Safranine T/triethanolamine in Aqueous Solution. Polymer 1996, 37, 1395-1398. https://doi.org/10.1016/0032-3861(96)81137-2
  26. Villegas, L.; Encinas, M.V.; Rufs, A.M.; Bueno, C.; Bertolot-ti, S.; Previtali, C.M. Aqueous Photopolymerization with Visible-Light Photoinitiators: Acrylamide Polymerization Photoinitiated with a Phenoxazine Dye/Amine System. J Polym Sci A Polym Chem. 2001, 39, 4074-4082. http://dx.doi.org/10.1002/pola.10059
  27. Valdebenito, A.; Encinas, M.V. Photopolymerization of 2-Hydroxyethyl Methacrylate: Effect of the Medium Properties on the Polymerization Rate. J Polym Sci A Polym Chem. 2003, 41, 2368-2373. https://doi.org/10.1002/pola.10776
  28. Cho, J.D.; Kim, H.K.; Kim, Y.S.; Hong, J.W. Dual Curing of Cationic UV-curable Clear and Pigmented Coating Systems Photo-sensitized by Thioxanthone and Anthracene. Polym. Test. 2003, 22, 633-645. https://doi.org/10.1016/S0142-9418(02)00169-1
  29. Sheng, C.K.; Bin Mat Yunus, W.M.; Yunus, W.M.Z.W.; Talib, Z.A.; Moksin, M.M. UV-Visible Photodegradation of Methylene Blue Doped in Poly (Vinyl Alcohol)(pva) Solid Matrix. Solid State Science and Technology 2003, 11, 124-130. http://psasir.upm.edu.my/id/eprint/42204
  30. Danziger, R.M.; Bar-Eli, K.H.; Weiss, K. The Laser Photoly-sis of Methylene Blue. J. Phys. Chem. 1967, 71, 2633-2640. https://doi.org/10.1021/j100867a037
  31. Tuite, E.M.; Kelly, J.M. New Trends in Photobiology: Photo-chemical Interactions of Methylene Blue and Analogues with DNA and Other Biological Substrates. J. Photochem. Photobiol. B, Biol. 1993, 21, 103-124. https://doi.org/10.1016/1011-1344(93)80173-7
  32. Bonneau, R.; Pottier, R.; Bagno, O.; Joussot-Dubien. J. pH Dependence of Singlet Oxygen Production in Aqueous Solutions Using Thiazine Dyes as Photosensitizers. Photochem. Photobiol. 1975, 21, 159-163. https://doi.org/10.1111/j.1751-1097.1975.tb06646.x
  33. Azmat, R.; Uddin, F. Photo Bleaching of Methylene Blue with Galactose and D-mannose by High Intensity Radiations. Canadian Journal of Pure and Applied Sciences 2008, 2, 275-283.
  34. Wildes, P.D.; Lichtin, N.N.; Hoffman, M.Z.; Andrews, L.; Linschitz, H. Anion and Solvent Effects on the Rate of Reduction of Triplet Excited Thiazine Dyes by Ferrous Ions. Photochem. Photobiol. 1977, 25, 21-25. https://doi.org/10.1111/j.1751-1097.1977.tb07419.x
  35. Faure, J.; Bonneau, R.; Joussot-Dubien, J. Etude en Spectros-copie Par Eclair des Colorants Thiaziniques en Solution Aqueuse. Photochem. Photobiol. 1967, 6, 331-339. https://doi.org/10.1111/j.1751-1097.1967.tb08881.x
  36. Havelcová, M.; Kubát, P.; Němcová, I. Photophysical Properties of Thiazine Dyes in Aqueous Solution and in Micelles. Dyes Pigm. 1999, 44, 49-54. https://doi.org/10.1016/S0143-7208(99)00070-4
  37. Görner, H. Oxygen Uptake Induced by Electron Transfer from Donors to the Triplet State of Methylene Blue and Xanthene Dyes in Air-Saturated Aqueous Solution. Photochem Photobiol Sci. 2008, 7, 371-376. https://doi.org/10.1039/b712496a
  38. Zhong, Q.; Ikeda, S. Viscoelastic Properties of Concentrated Aqueous Ethanol Suspensions of α-Zein. Food Hydrocoll. 2012, 28, 46-52. https://doi.org/10.1016/j.foodhyd.2011.11.014
  39. Geever, T.; Killion, J.; Grehan, L.; Geever, L.M. Chadwick, E.; Higginbotham, C. Effect of Photoinitiator Concentration on the Properties of Polyethylene Glycol Based Hydrogels for Potential Regenerative Medicine Application. Adv. Environ. Biol. 2014, 8, 7-17.