У дослідженні модельовано теплопередачу в нанорідині оксид алюмінію-вода в природному конвекційному потоці та конфігурації Релея-Бенара з урахуванням броунівських рухів і фрактальної структури нанорідин. Моделювання базувалися на двовимірному методі Ейлера-Ейлера. Проведено численнімоделювання для дослідження впливуаспектного відношення, теплового потоку та параметрів, пов’язаних зі структурою нанокластерів, включаючи розмір, фрактальну розмірність та об’ємну частку, на коефіцієнт природної конвекційної теплопередачі. Порівняння результатів моделювання з експериментальними даними коефіцієнта теплопередачі свідчить про те, що вони добреузгоджуються. Результати моделювання показали, що збільшення аспектного відношення, теплового потоку та фрактальної розмірності підвищує коефіцієнт теплопередачі. З іншого боку, зменшення нанокластерів і розміру наночастинок знижує цей коефіцієнт. Крім того, результати моделювання показали, що у потоках високої теплопередачі коефіцієнт теплопередачі спочатку збільшується через збільшення об’ємної частки твердих наночастинок, а потім зменшується. Проте коефіцієнт тепловіддачі неухильно зменшувався зі збільшенням об’ємної частки твердих наночастинок у потоках низької теплопередачі. Результати свідчать про те, що використання механізму броунівського руху наночастинок разом із їхньою фрактальною структурою може бути успішно застосоване в моделюванні природної конвекційної теплопередачі нанорідин.
- Kouloulias, K.; Sergis, A.; Hardalupas, Y.Sedimentation in Nanofluids During a Natural Convection Experiment.Int. J. Heat Mass Transf.2016, 101, 1193-1203. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113
- Ghadimi, A.; Saidur, R.; Metselaar, H.A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Transf.2011, 54, 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
- Hadad, Z.; Oztop, H.F.; Abu-Nada, E.;Mataoui, A.A Review on Natural Convective Heat Transfer of Nanofluids. Renew. Sust.Energ. Rev. 2012, 16, 5363-5378. https://doi.org/10.1016/j.rser.2012.04.003
- Yuan, M.; Mohebbi, R.; Rashidi, M.M.;Zhigang, Y.Simulation of Nanofluid Natural Convection in a U-Shaped Cavity Equipped by a Heating Obstacle: Effect of Cavity's Aspect Ratio. J Taiwan Inst Chem Eng2018, 93, 263-276. https://doi.org/10.1016/j.jtice.2018.07.026
- Meng, X.; Li,Y.Numerical Study of Natural Convection in a Horizontal Cylinder Filled with Water-Based Alumina Nanoflu-id.Nanoscale. Res. Let.2015, 10, 142. https://doi.org/10.1186/s11671-015-0847-x
- Ilyas, S.U.; Pendyala, R.; Narahari, M. Experimental Investiga-tion of Natural Convection Heat Transfer Characteristics in MWCNT-thermal Oil Nanofluid. J Therm Anal Calorim2019, 135, 1197-1209. https://doi.org/10.1007/s10973-018-7546-7
- Sarkar, J.A Critical Review on Convective Heat Transfer Correlations of Nanofluids.Renew. Sust. Energ. Rev. 2011, 15, 3271-3277. https://doi.org/10.1016/j.rser.2011.04.025
- Sheikhzadeh, G.A.;Ebrahim Qomi, M.; Hajialigol, N.; Fattahi, A.Numerical Study of Mixed Convection Flows in a Lid-Driven Enclosure Filled with Nanofluid Using Variable Properties.Results Phys.2012, 2, 5-13. https://doi.org/10.1016/j.rinp.2012.01.001
- Ehteram, H.R.; Abbasianarani, A.A.; Sheikhzadeh, G.A.;Aghaei, A.; Malihi,A.R.The Effect of Various Conductivity and Viscosity Models Considering Brownian Motion on Nanofluids Mixed Convection Flow and Heat Transfer. Chall. Nano Micro Scale Sci. Tech.2016, 4, 19-28. https://doi.org/10.7508/tpnms.2016.01.003
- Ghasemi, B.; Aminossadati S.M.Brownian Motion of Nano-particles in a Triangular Enclosure with Natural Convection.Int. J. Therm. Sci. 2010, 49, 931-940. https://doi.org/10.1016/j.ijthermalsci.2009.12.017
- Aminfar, H.; Haghgoo, M.R.Brownian Motion and Thermo-phoresis Effects on Natural Convection of Alumina–Water Nanofluid.J. Mech. Eng. Sci. 2012, 227, 100. https://doi.org/10.1177/0954406212445683
- Haddad, Z.; Abu-Nada, E.; Oztop, H F.; Mataoui, A.Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhance-ment?Int. J. Therm. Sci. 2012, 57, 152-162. https://doi.org/10.1016/j.ijthermalsci.2012.01.016
- Hong, J.; Kim, D.Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids.Thermochim. Acta2011, 542, 28-32.https://doi.org/10.1016/j.tca.2011.12.019
- Shalkevich, N.; Shalkevich, A.; Bürgi, T.Thermal Conductivi-ty of Concentrated Colloids in Different States.J. Phys. Chem. 2010, 114, 9568-9572.https://doi.org/10.1021/jp910722j
- Hong, K.S.; Hong, T.K.; Yang, H.S.Thermal Conductivity of Fe nanofluids Depending on the Cluster Size of Nanoparticles.App. Phys. Lett. 2006, 88, 031901.https://doi.org/10.1063/1.2166199
- Wu, C.; Cho, T.J.; Xu, J.;Lee, D.; Yang, B.; Zachariah, M.R.Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids.Phys. Rev. 2010, 81, 011406. https://doi.org/10.1103/PhysRevE.81.011406
- Sadeghi, R.; Haghshenasfard, M.; Etemad, S.Gh.;Keshavarzi, E.Theoretical Investigation of Nanoparticles Aggregation Effect on Water-Alumina Laminar Convective Heat Transfer.Int. Commun. Heat Mass Transf.2016, 72, 57-63. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.006
- Artyukhov, A.; Sklabinskyi, V.Theoretical Analysis of Gra-nules Movement Hydrodynamics in the Vortex Granulators of Ammonium Nitrate and Carbamide Production.Chem. Chem. Tech-nol. 2015, 9, 175-180.https://doi.org/10.23939/chcht09.02.175
- Nagursky, O.; Gumnitsky, Ya.; Vaschuk, V.Unsteady Heat Transfer during Encapsulation of Dispersed Materials in Quasi-liquefied State.Chem. Chem. Technol. 2015, 9, 497-501. https://doi.org/10.23939/chcht09.04.497
- Kindzera, D.; Hosovskyi, R.; Atamanyuk, V.; Symak, D.Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass.Chem. Chem. Technol. 2021, 15, 118-124. https://doi.org/10.23939/chcht15.01.118
- ANSYS CFX Solver Theory Guide r15; ANSYS Inc., 2015.
- Schiller, L.; Naumann, A. A Drag Coefficient Corre-lation. VDI Zeitung1935, 77, 318-320.
- Li, A.; Ahmadi, G.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol. Sci. Technol. 1992, 16, 209-226. https://doi.org/10.1080/02786829208959550
- Evans, W.; Prasher, R.; Fish, J.;Meakin, P.; Phelan, P.; Keb-linski, P.Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanof-luids.Int. J. Heat Mass Transf.2008, 51, 1431-1438. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017
- Nan, C.-W.; Birringer, R.; Clarke, D.R.;Gleiter, H.Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance.J. App. Phys. 1997, 81, 6692-6699. https://doi.org/10.1063/1.365209