Кополімеризація промислових хлорорганічних відходів з продуктами піролізу деревини для бітумних композицій

2023;
: cc. 929 - 935
1
Vasyl Stefanyk Precarpathian National University
2
1 V. Stefanyk Precarpathian National University
3
Lviv Polytechnic National University
4
I.I. Mechnikov Odesa National University
5
Perechyn Timber and Chemical Plant

У представленій роботі запропоновано новий підхід до проведення кополімеризації та сумісної переробки промислових хлорорганічних відходів (ХОВ) виробництва вінілхлориду ТОВ «Карпатнафтохім» м. Калуш, Україна, та рідких продуктів піролізу деревини (РППД), які утворюються при виробництві активованого вугілля з деревини на ТДВ «Перечинський лісохімічний комбінат». Вивчено склад сировини та властивості отриманих продуктів. ІЧ-спектроскопією та ДТА аналізом встановлено первинну будову та властивості одержаних із ХОВ і РППД кополімерів, олігомерів та асфальтових і бітумних виробів з них. Проведено випробування рідких продуктів піролізу деревини в складі бітумних композицій разом з ХОВ.

  1. Kurta, S. Catalysis of Ethylene Oxyclorination into 1,2-Diclorethane in the Presence of CuCl2/CuCl Active Centers on the Surface of γ-Al2O3. Chem. Chem. Technol. 2012, 6, 1–8. https://doi.org/10.23939/chcht06.01.001
  2. Kurta, S.; Zakrzhevsky, A.; Kurta, M. Utilization of Chloroorganic Waste by their Catalytic Copolymerization. Polimery 2007, 52, 51–55. http://doi.org/10.14314/polimery.2007.051
  3. Starchevskyy, V.; Shparij, M.; Hrynchuk, Yu.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloro-Ethane. Chem. Chem. Technol. 2020, 14, 394–402. https://doi.org/10.23939/chcht14.03.394
  4. Kurta, S.A.; Zakrzhevskyi, O.Y.; Kurta, O.S. Metody utylizatsii khlororhanichnykh ta sulfidovmisnykh vidkhodiv. Ekolohiya ta promyslovist 2009, 1, 64–68. http://nbuv.gov.ua/UJRN/ekolprom_2009_1_15
  5. Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B., Pyshyev, S.V. Application of phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. https://doi.org/10.1080/14680629.2020.1808518
  6. Postiyny Tekhnolohichny Reglament Tsekhu Vyrobnytstva Khlorystoho Vinilkhlorydu: “Fridrikh Ude” i JSC “Khiminterengineering” V-35/95, Kalush 1991–1995.
  7. WOOD PYROLYSIS (dry distillation of wood) http://greenpower.com.ua/clients/articles/2016-09-01-17-13-10
  8. Antal Jr, M.J.; Morten Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. https://doi.org/10.1021/ie0207919
  9. Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
  10. Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12