Сонохімічний синтез, характеризація та дослідження антибактеріальної активності композиту наночастинки оксиду міді/клиноптилоліт

2025;
: cc. 447 - 454
1
Національний університет „Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Danylo Halytsky Lviv National Medical University, Ukraine
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University, Ukraine
6
Національний університет „Львівська політехніка”
7
Національний університет “Львівська політехніка”
8
Національний університет “Львівська політехніка”

Методом сонохімічного синтезу з використанням мідного купоросу як прекурсора та натрію гідроксиду як осаджувального агента було отримано композит наночастинки CuO/клиноптилоліт. Синтезований композит було охарактеризовано техніками РД, ЕДРА, ІЧС з Фур’є-перетворенням та СЕМ. Було встановлено високу антибактеріальну активність композиту щодо грам-позитивної бактерії Staphylococcus aureus subsp. aureus ATCC 25923.

[1]        Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.-L.; Akhtar, F. Adsorption of Heavy Metals on Natural Zeolites: A Review. Chemosphere 2023, 328, 138508. https://doi.org/10.1016/j.chemosphere.2023.138508

[2]        Narayanan, S.; Tamizhdurai, P.; Mangesh, V.L.; Ragupathi, C.; Santhana krishnan, P.; Ramesh, A. Recent Advances in the Synthesis and Applications of Mordenite Zeolite – Review. RSC Adv. 2021, 11, 250–267. https://doi.org/10.1039/D0RA09434J

[3] Derbe, T.; Temesgen, S.; Bitew, M. A Short Review on Synthesis, Characterization, and Applications of Zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 6637898. https://doi.org/10.1155/2021/6637898

[4]        Li, Y.; Yu, J. Emerging Applications of Zeolites in Catalysis, Separation and Host–Guest Assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. https://doi.org/10.1038/s41578-021-00347-3

[5]        Bensafi, B.; Chouat, N.; Djafri, F. The Universal Zeolite ZSM-5: Structure and Synthesis Strategies. A Review. Coord. Chem. Rev. 2023, 496, 215397. https://doi.org/10.1016/j.ccr.2023.215397

[6]        Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140

[7]        Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; Moni, M.A. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. https://doi.org/10.1016/j.envadv.2020.100019

[8]        Moliner, M.; Martínez, C.; Corma, A. Multipore Zeolites: Synthesis and Catalytic Applications. Angew. Chem. Int. Ed. 2015, 54, 3560–3579. https://doi.org/10.1002/anie.201406344

[9]  Soonmin, H. Zeolite: Review of Characterization and Applications. Int. J. Chem. Biochem. Sci. 2023, 24, 704–715.

[10]  Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević, A.; Pržulj, N.; Pavelić, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front Pharmacol. 2018, 9, 1350. https://doi.org/10.3389/fphar.2018.01350

[11]      Erdem, E.; Karapinar, N.; Donat, R. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. https://doi.org/10.1016/j.jcis.2004.08.028

[12]         Inglezakis, V.J. The Сoncept of “Сapacity” in Zeolite Ion Exchange Systems. J. Colloid Interface Sci. 2005, 281, 68–79. https://doi.org/10.1016/j.jcis.2004.08.082

[13]      Poursaeidesfahani, A.; Andres-Garcia, E.; de Lange, M.; Torres-Knoop, A.; Rigutto, M.; Nair, N.; Kapteijn, F.; Gascon, J.; Dubbeldam, D.; Vlugt, T.J.H. Prediction of Adsorption Isotherms from breakthrough Curves. Microporous Mesoporous Mater. 2019, 277, 237–244. https://doi.org/10.1016/j.micromeso.2018.10.037

[14]      Lima, C.G.S.; Moreira, N.M.; Paixão, M.W.; Corrêa, A.G. Heterogenous Green Catalysis: Application of Zeolites on Multicomponent Reactions. Curr. Opin. Green Sustain. Chem. 2019, 15, 7–12. https://doi.org/10.1016/j.cogsc.2018.07.006

[15]   Makertihartha, I.G.B.N.; Azhari, N.J.; Kadja, G.T.M. A Review on Zeolite Application for Aromatic Production from Non-Petroleum Carbon-Based Resources. J. Eng. Technol. Sci. 2023, 55, 131–142. https://doi.org/10.5614/j.eng.technol.sci.2023.55.2.3

[16]      Qazi, U.Y.; Javaid, R.; Ikhlaq, A.; Khoja, A.H.; Saleem, F. A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. Molecules 2022, 27, 8578. https://doi.org/10.3390/molecules27238578

[17]      Valpotić, H.; Gračner, D.; Turk, R.; Đuričić, D.; Vince, S.; Folnožić, I.; Lojkić, M.; Žura Žaja, I.; Bedrica, L.; Maćešić, N.; et al. Zeolite Clinoptilolite Nanoporous Feed Additive for Animals of Veterinary Importance: Potentials and Limitations. Periodicum Biol. 2017, 119, 159–172. https://doi.org/10.18054/pb.v119i3.5434

[18]      Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical Applications of Zeolite-Based Materials: A Review. Mater. Sci. Eng. C 2020, 116, 111225. https://doi.org/10.1016/j.msec.2020.111225

[19]      Naz, S.; Gul, A.; Zia, M.; Javed, R. Synthesis, Biomedical Applications, and Toxicity of CuO Nanoparticles. Appl. Microbiol. Biotechnol. 2023, 107, 1039–1061. https://doi.org/10.1007/s00253-023-12364-z

[20]      Yahya, N.A.A.; Samir, O.M.; Al-Ariki, S.; Ahmed, A.A.M.; Swillam, M.A. Synthesis of Novel Antibacterial Nanocomposite CuO/Ag-Modified Zeolite for Removal of MB Dye. Sci. Rep. 2023, 13, 14948. https://doi.org/10.1038/s41598-023-40790-6

[21]      Mathanmohun, M.; Sagadevan, S.; Rahman, M.Z.; Lett, J.A.; Fatimah, I.; Moharana, S.; Garg, S.; Al-Anber, M.A. Unveiling Sustainable, Greener Synthesis Strategies and Multifaceted Applications of Copper Oxide Nanoparticles. J. Mol. Struct. 2024, 1305, 137788. https://doi.org/10.1016/j.molstruc.2024.137788

[22]      Alswat, A.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Saleh, T.A. Copper Oxide Nanoparticles-Loaded Zeolite and its Characteristics and Antibacterial Activities. J. Mater. Sci. Technol. 2017, 33, 889–896. https://doi.org/10.1016/j.jmst.2017.03.015

[23]      Alangari, A.; Aboul-Soud, M.A.M.; Alqahtani, M.S.; Shahid, M.; Syed, R.; Lakshmipathy, R.; Modigunta, J.K.R.; Jaiswal, H.; Verma, M. Green Synthesis of Copper Oxide Nanoparticles Using Genus Inula and Evaluation of Biological Therapeutics and Environmental Applications. Nanotechnol. Rev. 2024, 13, 20240039. https://doi.org/10.1515/ntrev-2024-0039

[24]          Matei, A.; Craciun, G.; Romanitan, C.; Pachiu, C.; Tucureanu, V. Biosynthesis and Characterization of Copper Oxide Nanoparticles. Eng. Proc. 2023, 37, 54. https://doi.org/10.3390/ECP2023-14629

[25]      Alshami, H.G.A.; Al-Tamimi, W.H.; Hateet, R.R. The Antioxidant Potential of Copper Oxide Nanoparticles Synthesized from a New Bacterial Strain. Biodiversitas 2023, 24, 2666–2673. https://doi.org/10.13057/biodiv/d240519

[26]      Kamila, E.A.; Abidin, Z.; Arief, I.I.; Trivadila. Synthesis, Characterization, Antibacterial Activity, and Potential Water Filter Application of Copper Oxide/Zeolite Composite. Makara J. Sci. 2023, 27, 186–193. https://doi.org/10.7454/mss.v27i3.1555

[27]      Znak, Z.; Sukhatskiy, Y. The Brandon Method in Modelling the Cavitation Processing of Aqueous Media. East. Eur. J. Enterp. Technol. 2016, 3(8(81), 37–42. https://doi.org/10.15587/1729-4061.2016.72539

[28] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The Decomposition of the Benzene in Cavitation Fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 1, 72–77.

[29]      Znak, Z.O.; Sukhatskiy, Y.V.; Mnykh, R.V.; Tkach, Z.S. Thermochemical Analysis of Energetics in the Process of Water Sonolysis in Cavitation Fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 3, 64–69.

[30]      Yavorskyi, V.T.; Znak, Z.O.; Sukhatskyi, Y.V.; Mnykh, R.V. Energy Characteristics of Treatment of Corrosive Aqueous Media in Hydrodynamic Cavitators. Mater. Sci. 2017, 52, 595– 600. https://doi.org/10.1007/s11003-017-9995-8

[31]      Rajamanikkam, S.C.R.R., Anbalagan, G.; Subramanian, B.; Suresh, V.; Sivaperumal, P. Green Synthesis of Copper and Copper Oxide Nanoparticles from Brown Algae Turbinaria Species' Aqueous Extract and its Antibacterial Properties. Cureus 2024, 16, e57366. https://doi.org/10.7759/cureus.57366

[32]      Du, B.D.; Phu, D.V.; Quoc, L.A.; Hien, N.Q. Synthesis and Investigation of Antimicrobial Activity of Cu2O Nanoparticles/Zeolite. J. Nanopart. 2017, 2017, 7056864. https://doi.org/10.1155/2017/7056864

[33]      Alswat, A.A.; Ahmad, M.B.; Saleh, T.A. Zeolite Modified with Copper Oxide and Iron Oxide for Lead and Arsenic Adsorption from Aqueous Solutions. J. Water Supply: Res. Technol. 2016, 65, 465–479. https://doi.org/10.2166/aqua.2016.014

[34]      Prakruthia, R.; Deepakumari, H.N. CuO Nanoparticles: Green Combustion Synthesis, Applications to Antioxidant, Photocatalytic and Sensor Studies. RSC Adv. 2024, 14, 28703. https://doi.org/10.1039/d4ra04622f

[35]      Sydorchuk, V.; Vasylechko, V.; Khyzhun, O.; Gryshchouk, G.; Khalameida, S.; Vasylechko, L. Effect of High- Energy Milling on the Structure, Some Physicochemical and Photocatalytic Properties of Clinoptilolite. Appl. Catal. A Gen. 2021, 610, 117930. https://doi.org/10.1016/j.apcata.2020.117930

[36]            Aloulou, H.; Bouhamed, H.; Ghorbel, A.; Amar, R.B.; Khemakhem, S. Elaboration and Characterization of Ceramic Microfiltration Membranes from Natural Zeolite: Application to the Treatment of Cuttlefish Effluents. Desalin. Water Treat. 2017, 95, 9–17. https://doi.org/10.5004/dwt.2017.21348

[37]      Manko, N.O.; Ilkov, O.O.; Klyuchivska, O.Y.; Vasylechko, V.O.; Sydorchuk, V.V.; Kovalska, N.P.; Kostiv, O.I.; Bagday, S.R.; Zelinskiy, A.V.; Gromyko, O.M.; et al. Antibacterial Action of Novel Zeolite-Based Compositions Depends upon Doping with Ag+ and Сu2+ Cations. Ukr. Biochem. J. 2024, 96, 104–118. https://doi.org/10.15407/ubj96.05.104

[38]      Nikolov, A.; Dobreva, L.; Danova, S.; Miteva-Staleva, J.; Krumova, E.; Rashev, V.; Neli Vilhelmova-Ilieva, N. Natural and Modified Zeolite Clinoptilolite with Antimicrobial Properties: A Review. Acta Microbiologica Bulgarica 2023, 39, 147–161. https://doi.org/10.59393/amb23390207

[39]      Znak, Z.; Kochubei, V. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on its Sorption Capacity. Chem. Chem. Technol. 2023, 17, 646–654. https://doi.org/10.23939/chcht17.03.646

[40]      Al-Maliki, S.B.; Al-Khayat, Z.Q.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for the Removal of Heavy Metals from an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255–258. https://doi.org/10.23939/chcht16.02.255

[41]      Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386

[42]      Konanets, R.; Stepova, K. Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite. Chem. Chem. Technol. 2024, 18, 94–102. https://doi.org/10.23939/chcht18.01.094

[43]      Milenković, J.; Hrenović, J.; Goić-Barišić, L.; Tomić, M.; Rajić, N. Antibacterial Activity of Copper-Containing Clinoptilolite/PVC Composites toward Clinical Isolate of Acinetobacterbaumannii. J. Serb. Chem. Soc. 2015, 80, 819. http://dx.doi.org/10.2298/JSC141225017M

[44]      Gebreslassie, Y.T.; Gebremeskel, F.G. Green and Cost- Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications. Biotechnol. Rep. 2024, 41, e00828. http://dx.doi.org/10.1016/j.btre.2024.e00828