Influence of reaction conditions on the selectivity of the process of epoxidation of oct-1-ene by tert-butyl hydroperoxide in the presence of МоВ

The influence of the reaction conditions on the selectivity of the interaction of oct-1-ene with tert-butyl hydroperoxide in the presence of MoB was investigated. It is shown that the selectivity of 1,2-epoxyoctane formation can vary depending on the reaction conditions.With the participation of the activated form of the catalyst, the selectivity increases significantly, but does not reach 100%. The optimal reaction conditions under which the selectivity of 1,2-epoxyoctane formation exceeds 90% have been established.

  1. Baljit Kaur, Palwinder Singh. Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorganic Chemistry, Vol. 125. August 2022, 105862.https://doi.org/10.1016/j.bioorg.2022.105862
  2. Isao Shimizu. Chiral synthesis of (-)-colletol based on palladium catalyzed reductive cleavage of alkenyloxiranes with formic acid. Chem. Lett. 1993.  # 10. pp. 1759−1760. https://doi.org/10.1246/cl.1993.1759
  3. Marco-Contelles J. Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev. 2004.  Vol. 104. P. 2857−2899. https://doi.org/10.1021/cr980013j
  4. Forbes J. E. Epoxides in synthesis. Synthesis of novel 2,6-dioxabicyclo[3.2.1]octane units in the citreoviridinols and the aurovertins.J. Chem. 1991. Vol. 1. # 8. pp. 1967−1973.https://doi.org/10.1039/p19910001967
  5. Yudin A. K. Aziridines and Epoxides in Organic Synthesis.Wiley−VCH, 2006. − 523 p. https://doi.org/10.1002/3527607862
  6. Elder D.P., Snodin D., Teasdale A. Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals. Journal of Pharmaceutical and Biomedical Analysis, 2010,   51  (5) , pp. 1015-1023. https://doi.org/10.1016/j.jpba.2009.11.023
  7. Hwang S., Choi C.Y., Lee E.Y. Bio- and chemo-catalytic preparations of chiral epoxides Journal of Industrial and Engineering Chemistry, 2010,  16  (1) , pp. 1-6. https://doi.org/10.1016/j.jiec.2010.01.001
  8. Denisov E. T. Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton, FL: CRC, Taylor and Francis, 2005. − 354 p. https://doi.org/10.1201/9781420030853
  9. Nakano Mazahiro. Sopolymer dyoksyda uhleroda y эpoksydosoderzhashcheho monomera v kachestve nosytelia lekarstvennыkh veshchestv.  J. Synth. Org. Chem.,1984. 42. #7. pp. 665−671. https://doi.org/10.5059/yukigoseikyokaishi.42.665
  10. Choi, W.J. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biotechnol. 2009. 84, 239-247 https://doi.org/10.1007/s00253-009-2110-9
  11. Chen X.−J. Microbiological transformations.The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganism or an unigavecal access to all four bisabolol stereoisomers. J. Org. Chem. 1993. 58. # 20. pp. 5528−5532.        https://doi.org/10.1021/jo00072a043
  12. Confalone Pat N. The synthesis of novel antitumour antibiotics structurally related to the anthracyclinones. J.Org. Chem. 1990.  Vol. 55. # 20. pp. 5520−5525.           https://doi.org/10.1021/jo00307a026
  13. Neef Gunter. Ceris (IV) ammonium nitrate catalyzed nucleophilic opening of a steroidal α, β-unsaturated epoxides. Synth. Commun. 1993. Vol. 23. # 7. pp. 903−911. https://doi.org/10.1016/j.tetlet.2006.05.182
  14. G. Magnusson, T. Frejd, N. Rehnberg, A. Sundin. Total synthesis of enantiomerically pure natural products via chiral unsaturated aldehydes formed by ring-contraction of sugar epoxides : 8th Int. IUPUC Conf. Org. Synth. Helsinki, 1990. p. 194.
  15. Besse P. Chemical and biological synthesis of chiral epoxides.  Tetrahedron. 1994. Vol. 50. pp. 8885−8927. https://doi.org/10.1016/S0040-4020(01)85362-X
  16. Diez D. Regio- and stereoselective ring opening of epoxides. Enantioselective synthesis of 2,3,4-trissubstituted five-membered heterocycles.Tetrahedron: Asymmetry. 2002. Vol. 13, # 6. pp. 639−646. https://doi.org/10.1134/S107042802004017X
  17. Punniyamurthy T. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen.Chemical Reviews. 2004. Vol. 11. pp. 277−320. https://doi.org/10.1021/cr050523v
  18. Wang X., You Q. , Wu Y., Bi C., Chen H., Dai C., Hao Q.,  Zhang J., Ma X. Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 2021. 317, 111028. https://doi.org/10.1016/j.micromeso.2021.111028
  19. Zhang H., Yang X., Song X., Chang X., Jia M. Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials.2020. 303. 110277. https://doi.org/10.1016/j.micromeso.2020.110277
  20. Kawashima H., Okuda Y., Kijima M., Fujitani T., Choi J.-C. Epoxidation of microalgal biomass-derived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 2020. 76(16). 131109. https://doi.org/10.1016/j.tet.2020.131109
  21. Vieira E.G., Filho N.L.D. Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 2017. 201(1), 262-270. https://doi.org/10.1016/j.matchemphys.2017.08.045
  22. Bisio C., Gallo A., Psaro R, Tiozzo C., Guidotti M., Carniato F. (2019) Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133-142. https://doi.org/10.1016/j.apcata.2019.05.027
  23. Emami M., Bikas R., Noshiranzadeh N., Kozakiewicz A., Lis T. Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of β-hydroxy-1,2,3-triazoles in water. ACS Omega, 2020. 5, 13344-13357. https://doi.org/10.1021/acsomega.0c01491
  24. Trach Yu.B., Chernyi M.O. Kinetyka epoksyduvannia oktenu-1 hidroperoksydom tretbutylu u prysutnosti MoB. Ukr. khym. zh. 2003. Vol.69, # 12. pp. 112-116.
  25. Trach Yu.B., Makota O.Y. Kynetychni zakonomirnosti hydroperoksydnoho epoksyduvannia oktenu-1 v prysutnosti MoV2. Teoret. i eksperym. khymyia. 2002. Vol. 38, #4. pp. 245-248. https://doi.org/10.1023/A:1020567815728
  26. Y.Yu.Pyryh, M.V.Nykypanchuk, B.Y.Cherniak. Epoksyduvannia oktenu-1 hidroperoksydom tretynnoho butylu v prysutnosti borydu molybdenu.  Kynetyka i katalyz, 1983, Vol. XXIV, # 3, pp.600-605.
  27. Z.M. Komarenska, M.V. Nykypanchuk, M.O. Chernii, O.V. Chaikivskyi. Vplyv zminy aktyvnosti molibdenborydnoho katalizatora na selektyvnist utvorennia epoksydu v reaktsii oktenu-1 z tret-butylhidroperoksydom. V Naukovo-tekhnichna konferentsiia "Postup v naftohazopererobnii ta naftokhimichnii promyslovosti ". 2007.  S. 289.
  28. Nykypanchuk M.V., Komarenska Z.M.,Chernyi M.O. Pro aktyvatsyu molybdenborydnykh katalyzatoriv v reaktsii epoksyduvannia oktenu-1 tretbutylhydroperoksydom. Kyn. i katalyz, 2014, 55 (2), 221.
  29. M.V. Nykypanchuk, Z.M. Komarenska, M.O. Chernii. Zakonomirnosti aktyvuvannia katalizatora Mo2B v reaktsii epoksyduvannia oktenu-1 tret-butylhidroperoksydom. Katalyz i naftokhimiia. 2008, №16. S. 91-94.
  30. M.V. Nykypanchuk, Z.M. Komarenska, M.O. Chernii. Modyfikuvannia poverkhni molibdenborydnoho katalizatora v protsesi okysnennia oktenu-1 tret-butylhidroperoksydom. I Ukrainska konferentsiia «Reaktsii okysnennia. Nauka i tekhnolohii», 2010m. Rubizhne. S. 52-53.
  31. Milas N. A. Studies in organic peroxides. t-butyl hydroperoxide and di-t-butyl peroxide.J. Amer. Chem. Soc. 1946. Vol. 68. #2. pp. 205-208. https://doi.org/10.1021/ja01206a017