У статті розглянуто додатні та конічні дробові неперервні та дискретні в часі лінійні системи. Наведено достатні умови для досяжності таких систем. Встановлено необхідні та достатні умови для додатності та асимптотичної стабільності неперервних у часі лінійних систем із затримкою. Сформульовано та розв’язано проблему реалізації додатних дробових неперервних у часі систем. Встановлено необхідні та достатні умови для додатності та практичної стабільності дробових дискретних у часі лінійних систем Застосовано підхід лінійної матричної нерівності (ЛМН) для перевірки асимптотичної стабільності додатних дробових дискретних у часі лінійних систем. Встановлено достатні умови для існування та запропоновано процедури для розрахунку додатних та конічних реалізацій дискретних у часі лінійних систем.
- M.Busłowicz, “Robust stability of positive of discrete-time linear systems with multiple delays with unity rank uncertainty structure or non-negative perturbation matrices,” Bull. Pol. Acad. Sci. Techn., vol. 55, no. 1, pp. 347-350, 2007.
- M.Busłowicz, “Simple stability conditions for linear positive discrete-time systems with delays,” Bull. Pol. Acad. Sci. Techn., vol. 56, no. 4, pp. 325-328, 2008.
- M.Busłowicz, “Stability of linear continuous-time fractional order systems with delays of the retarded type,” Bull. Pol. Acad. Sci. Techn., vol. 56, no. 4, pp. 318-324, 2008.
- M.Busłowicz, “Robust stability of positive discrete-time linear systems with multiple delays with linear unit rank uncertainty structure or non-negative perturbation matrices,” Bull. Pol. Acad. Sci. Techn., vol. 52, no. 2, pp. 99-102, 2004.
- M.Busłowicz and T. Kaczorek, “Robust stability of positive discrete-time interval systems with time delays,” Bull. Pol. Acad. Sci. Tech., vol. 55, no. 1, pp. 1-5, 2007.
- M.Busłowicz and T.Kaczorek, “Stability and robust stability of positive discrete-time systems with pure delays,” in Proc. 10th IEEE Int. Conf. On Methods and Models in Automation and Robotics, vol. 1, pp. 105-108, Międzyzdroje, Poland. 2004.
- M.Busłowicz and T.Kaczorek, “Robust stability of positive discrete-time systems with pure delays with linear unit rank uncertainty structure,” in Proc. 11th IEEE Int. Conf. On Methods and Models in Automation and Robotics, Paper 0169 (on CD-ROM), Międzyzdroje, Poland, 2005.
- L.Farina and S.Rinaldi, Positive Linear Systems; Theory and Applications, New York, USA: J. Wiley, 2000.
- E.Fornasini and G.Marchesini, “State-space realization theory of two-dimensional filters,” IEEE Trans, Autom. Contr., vol. AC-21, pp. 481-491, 1976.
- E.Fornasini and G.Marchesini, “Double indexed dynamical systems,” Math. Sys. Theory, vol. 12, pp. 59-72, 1978.
- D.Hinrihsen, N.K.Sin, and P.H.A.Hgoc, “Stability radii of positive higher order difference systems,” System&Control Letters, vol. 49, pp. 377-388, 2003.
- A.Hmamedd, A.Benzaouia, M.Ait Rami, and F.Tadeo, “Positive stabilization of discrete-time systems with unknown delays and bounded control,” in Proc. European Control Conference, Kos, Greece, pp. 5616-5622 (paper ThD07.3) , 2007.
- T.Kaczorek, Positive 1D and 2D Systems, London, UK: Springer-Verlag, 2002.
- T.Kaczorek, “Stability of positive discrete-time systems with time-delays,” in Proc. 8th World Multiconference on Systemics, Cybernetics and Informatics, pp. 321-324, Orlando, Florida, USA, 2004.
- T.Kaczorek, “Choice of the forms of Lyapunov function for positive 2D Roesser model,” Int. J. Applied Math. Comp. Sci., vol. 17, no. 4, pp. 471-475, 2007.
- T.Kaczorek, “Asymptotic stability of positive 1D and 2D linear systems,” Recent Advances in Control and Automation, Acad. Publ. House EXIT, pp. 41-52, 2008.
- T.Kaczorek, “Practical stability of positive fractional discrete-time systems,” Bull. Pol. Acad. Sci. Techn., vol. 56, no. 4, 313-318, 2008.
- T.Kaczorek, “Computation of realizations of discrete-time cone systems,” Bull. Pol. Acad. Sci. Techn., vol. 54, no. 3, pp. 347-350, 2006.
- T. Kaczorek, “Reachability and controllability to zero tests for standard and positive fractional discrete-time systems,” JESA Journal, vol. 42, no. 6-9, pp. 770-787, 2008.
- T.Kaczorek, “Positive minimal realizations for singular discrete-time systems with delays in state and delays in control,” Bull. Pol. Acad. Sci. Techn., vol. 53, no. 3, pp. 293-298, 2005.
- T.Kaczorek, “Asymptotic stability of positive 2D linear systems with delays,” Bull. Pol. Acad. Sci. Techn., vol. 52, no. 2, pp.133-138, 2009.
- T.Kaczorek, “Realization problem for singular positive continuous-time systems with delays,” Control and Cybernetics, vol. 36, no. 1, pp. 2-11, 2007.
- T.Kaczorek, “Realization problem for positive continuous-time systems with delays,” Int. J. Comp. Intellig. And Appl., vol. 6, no. 2, pp. 289-298, 2006.
- T.Kaczorek, “Realization problem for positive fractional hybrid 2D linear systems,” Fractional Calculus and Applied Analysis, vol. 11, no. 3, pp. 1-16, 2008.
- T.Kaczorek, “Reachability and controllability to zero of positive fractional discrete-time systems,” Machine Intelligence and Robotic Control, vol. 6, no. 4, pp. 139-143, 2007.
- T.Kaczorek, “Reachability and controllability to zero of cone fractional linear systems,” Archives of Control Scienes, vol. 17, no. 3, pp. 357-367, 2007.
- T.Kaczorek, “Fractional positive continuous-time linear systems and their reachability,” Int. J. Appl. Math. Sci., vol. 18, no. 2, pp. 223-228, 2008.
- T.Kaczorek, “Positive 2D hybrid linear systems,” Bull. Pol. Acad. Techn. Sci., vol. 55, no. 4, pp. 351-358, 2007.
- T.Kaczorek, “Realization problem for positive 2D hybrid systems,” COMPEL, vol. 27, no. 3, pp. 613-623, 2008.
- T.Kaczorek, “Positivity and stabilization of fractional 2D Roesser model by state feedbacks, LMI approach,” Archives of Control Sciences, vol. 19, no. 2, pp. 165, 2009.
- T.Kaczorek, “Realization problem for positive fractional discrete-time linear systems,” Int. J. Fact. Autom. Robot. Soft Comput., vol. 2, pp. 76-88, July 2008.
- T.Kaczorek, “Cone-realizations for multivariable continuous-time systems with delays,” in Proc. 5th Workshop of the IIGSS, Wuham, China, 14-17 June 2007.
- T.Kaczorek, “LMI approach to stability of 2D positive systems with delays,” Multidim. Syst. Sign Process., vol. 20, pp. 39-54, 2009.
- T.Kaczorek, “Reachcability of cone fractional continuous-time linear systems,” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 1, pp.89-93, , 2009.
- T.Kaczorek, “Stability of positive continuous-time linear systems with delays,” Bull. Pol. Acad. Sci. Techn., vol. 57, no. 4, pp. 395-398, 2009.
- T.Kaczorek, “Independence of the asymptotic stability of positive 2D linear systems with delays of their delays” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 2, pp. 255-261, 2009.
- T.Kaczorek, “Realization problem for fractional continuous-time systems,” Archives of Control Sciences, vol. 18, no. 1, pp. 43-58, 2008.
- T.Kaczorek, “LMI approaches to practical stability of positive fractional discrete-time linear systems,” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 4. 2009 (in Press).
- T.Kaczorek, “Asymptotic stability of positive 2D linear systems,” Proc. of 13th Scientific Conf. Computer Applications in Electrical Engineering, April 14-16, Poznan, Poland, pp. 1-5.
- T.Kaczorek, “Practical stability of positive fractional discrete-time linear systems,” Bull. Pol. Acad. Techn. Sci., vol. 56, no. 4, pp. 313-324, 2008.
- T.Kaczorek, “Reachability and controllability of non-negative 2D Roesser type models,” Bull. Pol. Acad. Sci. Techn., vol. 44, no. 4, pp. 405-410, 1966.
- T.Kaczorek, “Positive different orders fractional 2D linear systems,” Acta Mechanica et Automatica, vol. 2, no. 2, pp. 1-8, 2008.
- T.Kaczorek, “Fractional 2D linear systems,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 2, no. 2, pp. 5-9, 2008.
- T.Kaczorek, Selected Problems in Fractional System Theory, London, UK: Springer–Verlag, 2011.
- T.Kaczorek, “New stability tests of positive standard and fractional linear systems,” Circuits and Systems, vol. 2, pp. 261-268, 2011.
- T.Kaczorek, “Positive switched 2D linear systems described by the Roesser Models,” European Journal of Control, vol. 3, pp. 1-8, 2012.
- T.Kaczorek, M.Busłowicz, “Reachability and minimum energy control of positive linear discrete-time systems with multiple delays in state and control,” Pomiary, Automatyka, Kontrola, no. 10, pp. 40-44, 2007.
- T.Kaczorek and K.Rogowski, “Positivity and stabilization of fractional 2D linear systems described by the Roesser model,” in Proc. MMAR Conference, Międzyzdroje, Poland, 2009.
- J.Kurek, “The general state-space model for a two-dimensional filters,” IEEE Trans. Autom. Contr., AC-30, pp. 600-602, 1985.
- K.S.Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, USA: Willey, 1993.
- K.Nishimoto, Fractional Calculus, Decartess Press, Koriama, 1984.
- K.B.Oldham and J.Spanier, The Fractional Calculus, New York, USA: Academic Press, 1974.
- P. Ostalczyk, “The non-integer difference of the discrete-time function and its application to the control system synthesis,” Int. J. Syst. Sci., vol. 31, no. 12, pp. 1551-1561, 2000.
- A.Oustaloup, Fractional Derivative, Paris, France: Hermés, 1995. (French)
- Podlubny, Fractional Differential Equations, San Diego, USA: Academic Press, 1999.
- P.Przyborowski and T. Kaczorek, “Positive 2D discrete-time linear Lyapunov systems,” Int. J. Appl. Math. Comput. Sci., vol.19, no.1, pp. 95-1005, 2009.
- R.P.Roesser, “A discrete state-space model for linear image processing,” IEEE Trans. Autom. Contr., AC-20, vol. 1, pp. 1-10, 1975.
- M.Twardy, “An LMI approach to checking stability of 2D positive systems,” Bull. Pol. Acad. Sci. Techn., vol. 55, no.4, pp. 386-395, 2007.
- M.E. Valcher, “On the initial stability and asymptotic behavior of 2D positive systems,” IEEE Trans. on Circuits and Systems – I, vol. 44, no. 7, pp. 602-613, 1997.
- B.E.Vinagre, C.A.Monje, and A.J.Calderon, “Fractional order systems and fractional order control actions,” Lecture 3 IEEE CDC’02 TW#2: Fractional Calculus Applications in Autiomatic Control and Robotics.
- M.Vinagre, V.Feliu, “Modelling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexibles structures,” in Proc. 41st IEEE Conf. Decision and Control, pp. 214-613, Las Vegas, USA, 2002.