The paper represents the results of the investigation of the formation of a polymeric matrix of hydrogel due to the structuring of polyacrylamide using its reactive polymeric derivative – poly-N-(hydroxymethyl) acrylamide. Research determined zones of optimum conditions of synthesis and characterized hydrogel depending on pH of media, the ratio between the concentration of prepolymers, and time of synthesis. The investigation of the reaction mixture showed that the hydrogen index of the synthesis of hydrogels is one of the important factors, which in the design of the polymer framework of hydrogels allows regulating their colloidal chemical properties in a wide range.
1. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169
https://doi.org/10.3390/biom10081169
2. Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T., Xu, F. (2012). Magnetic Hydrogels and Their Potential Biomedical Applications. Advanced Functional Materials, 23(6), 660-672. doi:10.1002/adfm.201201708
https://doi.org/10.1002/adfm.201201708
3. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006
https://doi.org/10.3390/gels3010006
4. Samchenko Yu. M., Konovalova V. V., Kryklia S. O., Pasmurtseva N.O. (2015). Nanorozmirni ferohidroheli na osnovi N-izopropil-akrylamidu dlia kontrolovanoho transportu likarskykh preparativ. Polimernyi zhurnal, 37(4), 416-422.
5. Gong, C., Qi, T., Wei, X., Qu, Y., Wu, Q., Luo, F., & Qian, Z. (2012). Thermosensitive Polymeric Hydrogels As Drug Delivery Systems. Current Medicinal Chemistry, 20(1), 79-94. doi:10.2174/0929867311302010009.
https://doi.org/10.2174/0929867311302010009
6. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A review. Progress in Biomaterials, 7(1), 1-21. doi:10.1007/ s40204-018-0083-4.
https://doi.org/10.1007/s40204-018-0083-4
7. Shantha, K., & Harding, D. (2000). Preparation and in-vitro evaluation of poly[N-vinyl-2-pyrrolidone-polyethylene glycol diacrylate]-chitosan interpolymeric pH-responsive hydrogels for oral drug delivery. International Journal of Pharmaceutics, 207(1-2), 65-70. doi:10.1016/ s0378-5173(00)00533-0.
https://doi.org/10.1016/S0378-5173(00)00533-0
8. Xiong, L., Luo, Q., Wang, Y., Li, X., Shen, Z., & Zhu, W. (2015). An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chemical Communications, 51(78), 14644-14647. doi:10.1039/ c5cc06025g.
https://doi.org/10.1039/C5CC06025G
9. Seliktar, D., Black, R. A., Vito, R. P., & Nerem, R. M. (2000). Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro. Annals of Biomedical Engineering, 28(4), 351-362. doi:10.1114/1.275.
https://doi.org/10.1114/1.275
10. George. M., Joseph L., Francis L. T. (2017). Development and evaluation of silver sulphadiazine loaded sodium alginate gelatin film for wound dressing applications. European Journal of Pharmaceutical and Medical Research, 4(11), 420-423.
11. Naik, E. R., Reddy, K. V., & Swetha, N. (2019). Super Porous Hydrogels. Research Journal of Pharmacy and Technology, 12(1), 434. doi:10.5958/0974-360x.2019.00079.9.
https://doi.org/10.5958/0974-360X.2019.00079.9
12. Lin, R., Chen, Y., Moreno-Luna, R., Khademhosseini, A., & Melero-Martin, J. M. (2013). Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 34(28), 6785-6796. doi:10.1016/ j.biomaterials.2013.05.060.
https://doi.org/10.1016/j.biomaterials.2013.05.060
13. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13(12), 2853. doi:10.3390/ma13122853.
https://doi.org/10.3390/ma13122853
14. Tavakoli, J., & Tang, Y. (2017). Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering: C, 77, 318-325. doi:10.1016/j.msec.2017.03.272.
https://doi.org/10.1016/j.msec.2017.03.272
15. El-Mohdy, H. A., & Safrany, A. (2008). Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution. Radiation Physics and Chemistry, 77(3), 273-279. doi:10.1016/j.radphyschem. 2007.05.006.
https://doi.org/10.1016/j.radphyschem.2007.05.006
16. Rodrigues, F. H., Spagnol, C., Pereira, A. G., Martins, A. F., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2013). Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science, 131(2). doi:10.1002/app.39725.
https://doi.org/10.1002/app.39725
17. Park, J., Kim, H., Choi, J., Gwon, H., Shin, Y., Lim, Y., Nho, Y. (2012). Effects of annealing and the addition of PEG on the PVA based hydrogel by gamma ray. Radiation Physics and Chemistry, 81(7), 857-860. doi:10.1016/j.radphyschem.2012.02.005.
https://doi.org/10.1016/j.radphyschem.2012.02.005
18. Neimash V. B., Kupianskyi H. D., Olkhovyk I. V., Povarchuk V. Yu., Rohutskyi I. S. (2017). Fizychni vlastyvosti radiatsiino-zshytykh hidroheliv polivinilovyi spyrt-polietylenhlikol v konteksti zastosuvannia v medychnykh poviazkakh. Ukrainskyi Fizychnyi Zhurnal, 62(5), 400-409.
https://doi.org/10.15407/ujpe62.05.0402
19. Zhang, Y., Wu, F., Li, M., & Wang, E. (2005). PH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer, 46(18), 7695-7700. doi:10.1016/ j.polymer.2005.05.121.
https://doi.org/10.1016/j.polymer.2005.05.121
20. Nosova N. H., Samaryk V. Ia., Varvarenko S. M., Ferens M. V., Voronovska A. V., Nahorniak M. I., Khomiak S. V., Nadashkevych Z. Ia., Voronov S. A. (2016). Porysti poliakrylamidni hidroheli - oderzhannia ta vlastyvosti. Voprosy khymyy y khymycheskoi tekhnolohyy, 5(6), 78-86.
21. Samaryk, V., Varvarenko, S., Nosova, N., Fihurka, N., Musyanovych, A., Landfester, K., Voronov, S. (2017). Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry & Chemical Technology, 11(4), 449-453. doi:10.23939/chcht11.04.449.
https://doi.org/10.23939/chcht11.04.449
22. Christensen, L., Breiting, V., Vuust, J., & Hogdall, E. (2005). Adverse reactions following injection with a permanent facial filler polyacrylamide hydrogel (Aquamid): Causes and treatment. European Journal of Plastic Surgery, 28(7), 464-471. doi:10.1007/s00238-005-0005-2.
https://doi.org/10.1007/s00238-005-0005-2
23. Abramova L. Y., Baiburdov T. A., Hryhorian E. P. Polyakrylamyd (1992). Khymyia.
24. Nilimanka D. Preparation methods and properties of hydrogel: a review. (2013). International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 112-117.
25. Dwivedi S., Khatri P., Mehra G.R., Kumar V. Conceptual hydrogel-A, overview. (2001). International Journal of Pharmaceutical and Biological Archive, 2(6), 1588-1597.
26. Sonali B. D., Ganesh V. D., Sandeep S. T., Atul S. B., Avinash P. T., Hrishikesh A. J., Rajendra N. P. Hydrogel new trend in drug delivery system. Review. (2017). European Journal of Pharmaceutical and Medical Research, 4(1), 503-512.