The paper analyzes the possibility of utilizing the solid carbonized residue (SCR) from the pyrolysis of waste tires (WT). The pyrolysis process of waste tires produces about 36% of carbonized residue, which can serve as an adhesive and/or modifying additive in the processes of modifying petroleum bitumen. We analyzed the SCP and BND 70/100 bitumen produced at a small-scale industrial unit and PJSC Ukrtatnafta, respectively. The influence of solid carbonized residue on the performance properties of modified bitumen at different ratios of raw materials (BND 70/100) : SCR. According to the results obtained, the optimal amounts of SCR for modifying petroleum bitumen were proposed and directions for further research were determined.
1. Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J. M., Castaño, P. (2016). Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable Sustainable Energy Rev., 56, 745-759. https://doi.org/10.1016/j.rser.2015.11.081.
https://doi.org/10.1016/j.rser.2015.11.081
2. Song, W., Zhou, J., Li, Y., Li, Sh., Yang, J. (2021). Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue. Renew. Energy., 173, 283-296. https://doi.org/10.1016/j.renene.2021.03.090
https://doi.org/10.1016/j.renene.2021.03.090
3. Pyshyev, S., Lypko, Y., Chervinskyy, T., Fedevych, O., Kułażyński, M., Pstrowska, K. (2023). Application of tyre derived pyrolysis oil as a fuel component. S. Afr. J. Chem. Eng., 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
https://doi.org/10.1016/j.sajce.2022.12.003
4. Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., Ahmad, A. (2022). Case Stud. Constr. Mater., 17, 2214-5095. https://doi.org/10.1016/j.cscm.2022.e01677
https://doi.org/10.1016/j.cscm.2022.e01677
5. Przydatek, G., Budzik, G. & Janik, M. (2022). Effectiveness of selected issues related to used tyre management in Poland. Environ Sci Pollut Res., 29, 31467-31475. https://doi.org/10.1007/s11356-022-18494-7
https://doi.org/10.1007/s11356-022-18494-7
6. Han, J., Li, W., Liu, D., Qin, L., Chen, W., Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. J. Anal. Appl. Pyrolysis., 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016
https://doi.org/10.1016/j.jaap.2017.12.016
7. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O. (2017). Bitumen compositions for cold applied roofing products. Chem. Chem. Tech., 11(2), 226-229. https://doi.org/10.23939/chcht11.02.226
https://doi.org/10.23939/chcht11.02.226
8. Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O., Kochubei, V. (2020). Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Tech. 14(4), 420-425. https://doi.org/10.23939/chcht14.03.420
https://doi.org/10.23939/chcht14.03.420
9. Oboirien, B.O., North B.C. (2017). A review of waste tyre gasification. J. Environ. Chem. Eng., 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057
https://doi.org/10.1016/j.jece.2017.09.057
10. Xi-Shan, T., Wei-Hua, Z., Dong-Qing, L.I. (2006). Combustion characteristics of the waste tire by thermo-gravimetric analysis. J. Nanjing Univ. Technol. 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
11. Williams, P.T. (2013). Pyrolysis of waste tyres: a review. Waste Manag., 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003
https://doi.org/10.1016/j.wasman.2013.05.003
12. Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., Mastral, A.M. (2013). Waste tyre pyrolysis - a review. Renew. Sustain. Energy Rev., 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
https://doi.org/10.1016/j.rser.2013.02.038
13. Zhang, X., Tang, J., Chen, J. Behavior of sulfur during pyrolysis of waste tires: A critical review. J. Energy Inst., 102, 302-314 (2022). https://doi.org/10.1016/j.joei.2022.04.006
https://doi.org/10.1016/j.joei.2022.04.006
14. Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis - a review. Renew. Sustain. Energy Rev., 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
https://doi.org/10.1016/j.rser.2020.109932
15. Sagar, M., Nibedita, K., Manohar, N., Raj Kumar, K., Suchismita, S., Pradnyesh, A., Babul Reddy, A., Rotimi Sadiku, E., Gupta, U.N., Lachi,t P., Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management. 74, 110-122. https://doi.org/10.1016/j.wasman.2018.01.003
https://doi.org/10.1016/j.wasman.2018.01.003
16. Feng, Z., Rao, W., Chen, Ch., Tian, B., Li, X., Li, P., Guo, Q. (2016). Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres. Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
https://doi.org/10.1016/j.conbuildmat.2016.02.143
17. Wu X., Wang Sh., Dong R. (2016). Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater., 112, 623-628. https://doi.org/10.1016/j.conbuildmat.2016.02.208
https://doi.org/10.1016/j.conbuildmat.2016.02.208
18. DSTU ISO 589:2015 (2015). Hard coal - Determination of total moisture (ISO 589:2008, IDT). [Valid from 01.01.2016].
19. ISO 1171:1997 Solid mineral fuels - Determination of ash.
20. DSTU ISO 562:2015 (2015). Hard coal and coke - Determination of volatile matter (ISO 562:2010, IDT). [Valid from 01.01.2016].
21. ISO 351:1996 (1996). Solid mineral fuels - Determination of total sulfur - High temperature combustion method.
22. DSTU ISO 1928:2006 (2006). Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value (ISO 1928:1995, IDT). [Valid from 01.07.2008].
23. ISO 625:1996 (1996). Solid mineral fuels - Determination of carbon and hydrogen - Liebig method.
24. DSTU 9169:2021 (2021). Bitumen and bituminous binders determination of resistance to stripping from mineral material. [Valid from 01.08.2022].
25. ЕN 1427:2015 (2015). Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method). [Valid from 01.06.2019].
26. EN 1426:2015 (2015). Bitumen and bituminous binders - Determination of needle penetration). [Valid from 01.06.2019].
27. DSTU 8825:2019 (2015). Bitumen and bitumen binders. Determination of tensile strength. [Valid from 01.01.2020].
28. DSTU 8787:2018 (2018). Bitumen and bituminous binders. Method for determining adhesion to crushed stone [Valid from 01.06.2019].
29. ДСТУ EN 13398:2018 (2018). Bitumen and bituminous binders. Determination of the elasticity (EN 13398:2017, IDT). [Valid from 01.12.2019].
30. DSTU Б EN 12607-1:2015 (2015). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 1. RTFOT method (EN 12607-1:2014, IDT). [Valid from 01.07.2016].
31. DSTU 4044:2019 (2015). Bitumens petroleum. Specifications [Valid from 01.05.2020].
32. Prysiazhnyi, Y., Borbeyiyong, G. I., Pyshyev, S. (2022). Preparation and Application of Coumarone-Indene-Carbazole Resin as a Modifier of Road Petroleum Bitumen. 1. Influence of Carbazole:Raw Materials Ratio. Chem. Chem. Tech., 16(2), 284-294. https://doi.org/10.23939/chcht16.02.284
https://doi.org/10.23939/chcht16.02.284
33. SOU 45.2-00018112-067:2011. Road bitumen, modified with adhesive additives. Specifications. Change № 1. [Valid from 01.09.2011].