Temperature Effect on the Process of Road Bitumen Modification with Carbonized Residue from the Waste Tires Pyrolysis

2025;
: pp. 590 - 600
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University, Ukraine
5
Lviv Polytechnic National University, Ukraine

The possibility of utilizing solid carbonized residue (CR) obtained in the pyrolysis of waste automobile tires (WT) was analyzed. On average, as a result of WT pyrolysis, about 36 wt. % of carbonized residue is obtained, which can serve as an adhesion additive and/or aging inhibitor in modifying petroleum bitumen. The CR obtained at a small-tonnage industrial plant and bitumen of the BND 70/100 brand produced by PJSC "Ukrtatnafta" were analyzed. The influence of the carbonized residue on the operational properties of modified bitumen was established for different ratios of raw materials (BND 70/100 bitumen):CR, and at different mixing temperatures. According to the obtained results, the optimal amounts of CR and temperatures for modifying petroleum bitumen were proposed.

[1]        Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers From it. J Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598

[2]        Pyshyev, S.; Lypko, Y., Demchuk. Y.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 18, 244–257. https://doi.org/10.23939/chcht18.02.244

[3]        Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. ChemEngineering 2024, 8, 27. https://doi.org/10.3390/chemengineering8020027

[4]        Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Yu.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674–680. https://doi.org/10.23939/chcht17.03.674

[5]        Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Lebedev, V.; Yasinska, A.; Lypko, Yu. Obtaining New Materials from Liquid Pyrolysis Products of Waste tires for Waste Valorization. Sustainability 2025, 17, 3919. https://doi.org/10.3390/su17093919

[6]             Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi:10.23939/chcht15.02.239

[7]        Dewangan, A.; Ahmad, A.; Yadav, AK. Innovative Research on Waste Tire Recycling for Sustainable Biofuel Production: Assessment of its Usability on Multi-Cylinder Diesel Engine Employing Constant Injection of Oxyhydrogen and Biogas Through a Premixing Device. Int. J. Hydrog. Energy 2024, 84, 155–163. https://doi.org/10.1016/j.ijhydene.2024.08.131

[8]        Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159

[9]        Dewangan, A.; Yadav, AK.; Mallick, A. Effect of n- Butanol and Diethyl Ether Additives on Performance and Emission Characteristics of a Diesel Engine Fuelled with Diesel- Pongamia Biodiesel Blends. J Energy Eng. 2018, 144, 04018062. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000570

[10]      Gunerhan, A.; Altuntas, O.; Caliskan, H. Utilization of Renewable and Sustainable Aviation Biofuels from Waste Tyres for Sustainable Aviation Transport Sector. Energy 2023, 276, 127566. https://doi.org/10.1016/j.energy.2023.127566

[11]      Dobrotă, D.; Dobrotă, G.; Dobrescu, T. Improvement of Waste Tyre Recycling Technology Based on a New Tyre Markings. J. Clean. Prod. 2020, 260, 121141. https://doi.org/10.1016/j.jclepro.2020.121141

[12]      Abdullah, Z.T. Remanufactured Waste Tire By-Product Valorization: Quantitative–Qualitative Sustainability-Based Assessment. Results Eng. 2024, 22, 102229. https://doi.org/10.1016/j.rineng.2024.102229

[13]      Sulaiman, M.S.; Wahab, D.A.; Harun, Z.; Hishamuddin, H.; Khamis N.K.; Mansor, MRA. Preliminary Study on End-of- Life Vehicles Recycling Rate for Malaysia. Energy Rep. 2023, 9, 235–246. https://doi.org/10.1016/j.egyr.2023.05.250

[14]      Chauhan, RS.; Shrivastava, N. Neuro Fuzzy-Grey Wolf Optimization-Based Modelling and Analysis of Diesel Engine Using Tire oil with Different Proportions of 2-EHN. Fuel 2025, 384, 133849. https://doi.org/10.1016/j.fuel.2024.133849

[15]      Han, J.; Li, W.; Liu, D.; Qin, L.; Chen, W.; Xing, F. Pyrolysis Characteristic and Mechanism of Waste Tyre: A Thermogravimetry-Mass Spectrometry Analysis. J. Anal. Appl. Pyrolysis 2018, 129, 1–5. https://doi.org/10.1016/j.jaap.2017.12.016

[16]      Przydatek, G.; Budzik, G.; Janik, M. Effectiveness of Selected Issues Related to Used Tyre Management in Poland. Environ. Sci. Pollut. Res. 2022, 29, 31467–31475. https://doi.org/10.1007/s11356-022-18494-7

[17]      Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O.; Kochubei, V. Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Technol. 2020, 14, 420–425. https://doi.org/10.23939/chcht14.03.420

[18]      Oboirien, B.O.; North, B.C. A Review of Waste Tyre Gasification. J. Environ. Chem. Eng. 2017, 5, 5169–5178. https://doi.org/10.1016/j.jece.2017.09.057

[19]      Tang, X.; Zhang, W.; Li, D. Thermogravimetric Analysis of Combustion Characteristics of Waste Tires. J. Nanjing Univ. Sci. Technol. 2006, 28, 85–88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020

[20]      Williams, P.T. Pyrolysis of Waste Tyres: A Review. Waste Manage. 2013, 33, 1714–1728. https://doi.org/10.1016/j.wasman.2013.05.003

[21]      Martinez, J.D.; Puy, N.; Murillo, R.; Garcia, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. https://doi.org/10.1016/j.rser.2013.02.038

[22]      Zhang, X.; Tang, J.; Chen, J. Behavior of Sulfur During Pyrolysis of Waste Tires: A Critical Review. J. Energy Inst. 2022, 102, 302–314. https://doi.org/10.1016/j.joei.2022.04.006

[23]      Sagar, M.; Nibedita, K.; Manohar, N.; Kumar, K.R.; Suchismita, S.; Pradnyesh, A.; Reddy, A.B.; Sadiku, E.R.; Gupta, U.N.; Lachit, P.; et al. A Potential Utilization of End-of-Life Tyres as Recycled Carbon Black in EPDM Rubber. Waste Manage. 2018, 74, 110–122. https://doi.org/10.1016/j.wasman.2018.01.003

[24]      Feng, Z.; Rao, W.; Chen, Ch.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance Evaluation of Bitumen Modified with Pyrolysis Carbon Black Made from Waste Tyres. Constr. Build. Mater. 2016, 111, 495–501. https://doi.org/10.1016/j.conbuildmat.2016.02.143

[25]      Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003

[26]      DSTU ISO 589:2015; National Standard of Ukraine; Hard coal – Determination of total moisture. SE UkrNDNC: Kyiv, Ukraine, 2015.

[27] GOST 11022-95; Interstate standard; Solid Mineral Fuel. Methods for Determining Ash Content. ITC 179: Minsk, Belarus, 1995.

[28]      DSTU ISO 562:2015; National Standard of Ukraine; Hard coal and coke – Determination of volatile matter. SE UkrNDNC: Kyiv, Ukraine, 2015.

[29]      ISO 351:1996. ; Interstate standard; Solid mineral fuels — Determination of total sulfur — High temperature combustion method. TC 27 and SC 5: Genève, Switzerland, 1996.

[30]      DSTU ISO 1928:2006; National Standard of Ukraine; Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value. ТК 63: Kyiv, Ukraine, 2006.

[31] ISO 625:1996; Interstate standard; Solid mineral fuels — Determination of carbon and hydrogen — Liebig method. TC 27 and SC 5: Genève, Switzerland, 1996.

[32]      EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.

[33]      EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.

[34]            Chipko, T.; Donchenko, M.; Prysiazhnyi, Yu.; Mnykh. R.; Pochapska, I.; Pyshyev, S. Study on the Technical Lignin Effect on the Road Bitumen Properties. Chem. Chem. Technol. 2025, 19, 395–402. https://doi.org/10.23939/chcht19.02.395

[35]      EN 13398:2018; Bitumen and Bituminous Binders. Determination of the Elasticity. iTeh: Newark, NJ, USA, 2019.

[36]             DSTU 8787:2018; National Standard of Ukraine; Bitumen and Bituminous Binders. Determination of Adhesion with Crushed Stone. SE UkrNDNC: Kyiv, Ukraine, 2018.

[37] DSTU 9169:2021; National Standard of Ukraine; Bitumen and bituminous Binders. Determination of Resistance to Stripping from Mineral Material. SE UkrNDNC: Kyiv, Ukraine, 2022.

[38]      EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.

[39]      Pyshyev, S.; Kukhar, O.; Prysiazhnyi, Yu.; Korchak, B.; Niavkevych, М.; Fałtynowicz, H.; Zhytnetskyi, I. Use of Carbonized Residue from the Pyrolysis Process of Waste Tires as a Modifier of Road Bitumen. Chemistry, technology and application of substances 2024, 7, 86–94. https://doi.org/10.23939/ctas2024.01.086

[40]      DSTU 4044:2019. National Standard of Ukraine; Bitumens petroleum. SE UkrNDNC: Kyiv, Ukraine, 2020.

[41] SOU 45.2-00018112-067:2011. National Standard of Ukraine; Road Bitumen, Modified with Adhesive Additives. Specifications. SE UkrNDNC: Kyiv, Ukraine, 2011.